留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(17)

数据统计

分享

计量
  • 文章访问数:  527
  • HTML全文浏览量:  232
  • PDF下载量:  44
  • 被引次数: 0
Yaqi Wu, Peter K. Liaw, Ruixuan Li, Weiran Zhang, Guihong Geng, Xuehui Yan, Guiqun Liu, and Yong Zhang, Relationship between the unique microstructures and behaviors of high-entropy alloys, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2777-4
Cite this article as:
Yaqi Wu, Peter K. Liaw, Ruixuan Li, Weiran Zhang, Guihong Geng, Xuehui Yan, Guiqun Liu, and Yong Zhang, Relationship between the unique microstructures and behaviors of high-entropy alloys, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2777-4
引用本文 PDF XML SpringerLink
特约综述

高熵合金的特殊结构与性能之间的关系


  • 通讯作者:

    张勇    E-mail: drzhangy@ustb.edu.cn

文章亮点

  • (1) 以独特的角度综述了高熵合金近年来的发展。
  • (2) 提出了关于加工方式与性能之间的关系。
  • (3) 列举并讨论了高熵合金特殊结构和性能之间的关系。
  • 高熵合金(high entropy alloy,HEA)在2004 年首次以开创性概念提出,引起了众多研究人员的浓厚兴趣。在热力学中,熵用于描述系统的混乱程度。相比之下,合金体系中的元素组成在空间中占据特定的结构位点,这一概念称为结构熵,可以被视为代表无序和随机性。同时,合金的结构可以作为一类可统计的信息,因此有人提出“香农熵”的概念。通常,材料中原子的排列(称为其结构)在决定其性质方面起着关键作用。除了拓展合金组成元素的选择范围外,高熵合金还为各种结构设计提供了更多的可能性。许多例子强调了不同结构特征对合金特殊行为的深远影响。这些特点包括极高的断裂强度、优异的延展性、抗弹能力、出色的耐辐射性和耐腐蚀性。在本文中,我们深入列举讨论了各种独特的材料结构和性能,同时阐明了结构与性能之间的复杂关系。
  • Invited Review

    Relationship between the unique microstructures and behaviors of high-entropy alloys

    + Author Affiliations
    • High-entropy alloys (HEAs), which were introduced as a pioneering concept in 2004, have captured the keen interest of numerous researchers. Entropy, in this context, can be perceived as representing disorder and randomness. By contrast, elemental compositions within alloy systems occupy specific structural sites in space, a concept referred to as structure. In accordance with Shannon entropy, structure is analogous to information. Generally, the arrangement of atoms within a material, termed its structure, plays a pivotal role in dictating its properties. In addition to expanding the array of options for alloy composites, HEAs afford ample opportunities for diverse structural designs. The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numerous examples. These features include remarkably high fracture strength with excellent ductility, antiballistic capability, exceptional radiation resistance, and corrosion resistance. In this paper, we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.
    • loading
    • [1]
      H.L. Zhuang, Sudoku-inspired high-Shannon-entropy alloys, Acta Mater., 225(2022), art. No. 117556. doi: 10.1016/j.actamat.2021.117556
      [2]
      Y. Zhang, High Entropy Materials-Microstructures and Properties, IntechOpen Press, Rijeka, 2023.
      [3]
      Y.S. Li, S.C. Zhou, and Y. Zhang, Future research directions and applications for high-entropy materials, [in] J. Brechtl and P.K. Liaw, eds., High-Entropy Materials : Theory , Experiments , and Applications, Springer, Cham, 2021, p.721.
      [4]
      X.H. Yan, Y. Zou, and Y. Zhang, Properties and processing technologies of high-entropy alloys, Mater. Futures, 1(2022), No. 2, art. No. 022002. doi: 10.1088/2752-5724/ac5e0c
      [5]
      N. Xiao, X. Guan, D. Wang, et al., Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1667. doi: 10.1007/s12613-023-2641-6
      [6]
      G. Laplanche, P. Gadaud, C. Bärsch, et al., Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy, J. Alloys Compd., 746(2018), p. 244. doi: 10.1016/j.jallcom.2018.02.251
      [7]
      C.L. Lin, J.L. Lee, S.M. Kuo, et al., Investigation on the thermal expansion behavior of FeCoNi and Fe30Co30Ni30Cr10- xMn x high entropy alloys, Mater. Chem. Phys., 271(2012), art. No. 124907.
      [8]
      M.S. Jadhav, D. Sahane, A. Verma, and S. Singh, Thermal stability and thermal expansion behavior of FeCoCrNi2Al high entropy alloy, Adv. Powder Technol., 32(2021), No. 2, p. 378. doi: 10.1016/j.apt.2020.12.019
      [9]
      M. Behera, A. Panigrahi, M. Bönisch, et al., Structural stability and thermal expansion of TiTaNbMoZr refractory high entropy alloy, J. Alloys Compd., 892(2022), p. 162154. doi: 10.1016/j.jallcom.2021.162154
      [10]
      S.C. Zhou, C.D. Dai, H.X. Hou, Y.P. Lu, P.K. Liaw, and Y. Zhang, A remarkable toughening high-entropy-alloy wire with a bionic bamboo fiber heterogeneous structure, Scripta Mater., 226(2023), art. No. 115234. doi: 10.1016/j.scriptamat.2022.115234
      [11]
      Y.Y. Zhao, Superplasticity of Cu–Sn and Ni–Mn–Ga Shape Memory Microwires by Glass-Coated Melt Spinning Technique [Dissertation], University of Science and Technology Beijing, Beijing, 2015, p. 75.
      [12]
      X.H. Chen, X.C Zhang, Y. Zhang, and G.L. Chen, Processing and structures of porous bulk metallic glass with unidirectional opening pores, Rare Met. Mater. Eng., 37(2008), Suppl. 4, p. 695.
      [13]
      Y.Y. Yue, X.H. Yan, and Y. Zhang, Nano-fiber-structured Cantor alloy films prepared by sputtering, J. Mater. Res. Technol., 21(2022), p. 1120. doi: 10.1016/j.jmrt.2022.09.107
      [14]
      Y.Q. Wu, Y.S. Cai, J.P. Hao, et al., Co47.5Fe28.5Ni19Si3.3Al1.7 high-entropy skeletons fabricated by selective laser melting and properties tuned by pressure infiltration of Al, Res. Appl. Mater. Sci., 4(2022), No. 2, p. 24. doi: 10.33142/rams.v4i2.8467
      [15]
      X.F. Song, P.K. Liaw, Z.Y. Wei, et al, Evolution of the microstructures, magnetic and mechanical behaviors of Co47.5Fe28.5Ni19Si3.4Al1.6 high-entropy alloy fabricated by laser powder bed fusion, Addit. Manuf., 71(2023), art. No. 103593.
      [16]
      P.J. Shi, R.G. Li, Y. Li, et al., Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 373(2021), No. 6557, p. 912. doi: 10.1126/science.abf6986
      [17]
      D.Y. Li and Y. Zhang, The ultrahigh charpy impact toughness of forged Al xCoCrFeNi high entropy alloys at room and cryogenic temperatures, Intermetallics, 70(2016), p. 24. doi: 10.1016/j.intermet.2015.11.002
      [18]
      D.Y. Li, Z.M. Li, L. Xie, Y. Zhang, and W.R. Wang, Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy, Nano Res., 15(2022), No. 6, p. 4859. doi: 10.1007/s12274-021-3719-y
      [19]
      Y.Z. Wang, Z.M. Jiao, G.B. Bian, et al., Dynamic tension and constitutive model in Fe40Mn20Cr20Ni20 high-entropy alloys with a heterogeneous structure, Mater. Sci. Eng. A, 839(2022), art. No. 142837. doi: 10.1016/j.msea.2022.142837
      [20]
      Y.Q. Tang and D.Y. Li, Dynamic response of high-entropy alloys to ballistic impact, Sci. Adv., 8(2022), No. 32, art. No. eabp9096. doi: 10.1126/sciadv.abp9096
      [21]
      W.R. Zhang, Y.S. Li, P. Liaw, and Y. Zhang, A strategic design route to find a depleted uranium high-entropy alloy with great strength, Metals, 12(2022), No. 4, art. No. 699. doi: 10.3390/met12040699
      [22]
      J. Shi, Y.Z. Zhang, X. Wang, et al., Microstructure and mechanical properties of UNbTiHf1– xMo x high-entropy alloys, Mater. Sci. Eng. A, 860(2022), art. No. 144239. doi: 10.1016/j.msea.2022.144239
      [23]
      Y.S. Li, P.K. Liaw, and Y. Zhang, Microstructures and properties of the low-density Al15Zr40Ti28Nb12M(Cr, Mo, Si)5 high-entropy alloys, Metals, 12(2022), p. 496. doi: 10.3390/met12030496
      [24]
      X.H. Yan, P.K. Liaw, and Y. Zhang, Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates, J. Mater. Sci. Technol., 110 (2022), No. 15, p. 109
      [25]
      J.J. Yi, F.Y. Cao, M.Q. Xu, L. Yang, L. Wang, and L. Zeng, Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1231. doi: 10.1007/s12613-020-2214-x
      [26]
      M.A. Khan, M. Hamza, J. Brechtl, et al., Development and characterization of a low-density TiNbZrAlTa refractory high entropy alloy with enhanced compressive strength and plasticity, Mater. Charact., 205(2023), art. No. 113301. doi: 10.1016/j.matchar.2023.113301
      [27]
      M. Abubaker Khan, T.L. Wang, C.S. Feng, et al., A superb mechanical behavior of newly developed lightweight and ductile Al0.5Ti2Nb1Zr1W x refractory high entropy alloy via nano-precipitates and dislocations induced-deformation, Mater. Des., 222(2022), art. No. 111034. doi: 10.1016/j.matdes.2022.111034
      [28]
      X.F. Liu, Z.L. Tian, X.F. Zhang, et al., “Self-sharpening” tungsten high-entropy alloy, Acta Mater., 186(2020), p. 257. doi: 10.1016/j.actamat.2020.01.005
      [29]
      K. Jin, C. Lu, L.M. Wang, et al., Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys, Scripta Mater., 119(2016), p. 65. doi: 10.1016/j.scriptamat.2016.03.030
      [30]
      D.J.M. King, S.T.Y. Cheung, S.A. Humphry-Baker, et al., High temperature, low neutron cross-section high-entropy alloys in the Nb–Ti–V–Zr system, Acta Mater., 166(2019), p. 435. doi: 10.1016/j.actamat.2019.01.006
      [31]
      R.X. Li, Z. Ren, Y. Wu, et al., Mechanical behaviors and precipitation transformation of the lightweight high-Zn-content Al–Zn–Li–Mg–Cu alloy, Mater. Sci. Eng. A, 802(2021), art. No. 140637. doi: 10.1016/j.msea.2020.140637
      [32]
      Y.R. Shi, W.T. Ye, D.P. Hua, et al., Interfacial engineering for enhanced mechanical performance: High-entropy alloy/graphene nanocomposites, Mater. Today. Phys., 38(2023), art. No. 101220. doi: 10.1016/j.mtphys.2023.101220

    Catalog


    • /

      返回文章
      返回