留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 9
Sep.  2024

图(17)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1093
  • HTML全文浏览量:  462
  • PDF下载量:  20
  • 被引次数: 0
Jishuo Han, Yong Li, Chenhong Ma, Qingyao Zheng, Xiuhua Zhang, and Xiaofang Wu, Study on the oxidation mechanism of Al–SiC composite at elevated temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2077-2087. https://doi.org/10.1007/s12613-023-2778-3
Cite this article as:
Jishuo Han, Yong Li, Chenhong Ma, Qingyao Zheng, Xiuhua Zhang, and Xiaofang Wu, Study on the oxidation mechanism of Al–SiC composite at elevated temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2077-2087. https://doi.org/10.1007/s12613-023-2778-3
引用本文 PDF XML SpringerLink
研究论文

高温下Al–SiC复合材料的氧化机理研究


  • 通讯作者:

    李勇    E-mail: lirefractory@vip.sina.com

文章亮点

  • (1) 系统研究了 Al–SiC 复合材料高温下的氧化机理。
  • (2) 铝的引入可增强碳化硅的高温抗氧化性并探究其作用机理。
  • (3) Al–SiC 复合材料可被用作陶瓷烧成用新型窑具。
  • 本文在空气条件下分别于1100°C、1300°C和1500°C烧结树脂结合Al–SiC复合材料,探究了其氧化机理,并建立了反应模型。随着温度升高,Al–SiC复合材料的抗氧化性能明显增强,试样外部的SiC仅发生轻微的局部氧化,内部存在低温亚稳相Al4C3向高温稳定相Al4SiC4的转变。在1100°C,试样内部Al与残C反应生成Al4C3。升至1300°C,高温以及低氧分压导致SiC发生活性氧化。随着反应进行,内部气相组成为Al2O(g) + CO(g) + SiO(g)。当Al4C3形成后,CO(g)和SiO(g)在Al4C3表面不断沉积,并最终将其转变为Al4SiC4。在1500°C,试样外层形成了一层由SiC和Al4SiC4晶须共同组成的致密层,切断了环境中氧气向试样内层的扩散通道。高温诱导 SiC的活性氧化反应加速,更多的气相参与反应合成Al4SiC4,最终在SiC颗粒间形成了相互堆积的六方片状Al4SiC4。Al的引入不仅提高了SiC的高温抗氧化性能,同时原位生成的非氧化物在微观尺度上实现了均匀分散,使其与SiC稳定结合。
  • Research Article

    Study on the oxidation mechanism of Al–SiC composite at elevated temperature

    + Author Affiliations
    • Resin-bonded Al–SiC composite was sintered at 1100, 1300, and 1500°C in the air, the oxidation mechanism was investigated. The reaction models were also established. The oxidation resistance of the Al–SiC composite was significantly enhanced with temperature increase. SiC in the exterior of the composite was partially oxidized slightly, while the transformation of metastable Al4C3 to stable Al4SiC4 existed in the interior. At 1100°C, Al in the interior reacted with residual C to form Al4C3. With increasing to 1300°C, high temperature and low oxygen partial pressure lead to active oxidation of SiC, and internal gas composition transforms to Al2O(g) + CO(g) + SiO(g) as the reaction proceeds. After Al4C3 is formed, CO(g) and SiO(g) are continuously deposited on its surface, transforming to Al4SiC4. At 1500°C, a dense layer consisting of SiC and Al4SiC4 whiskers is formed which cuts off the diffusion channel of oxygen. The active oxidation of SiC is accelerated, enabling more gas to participate in the synthesis of Al4SiC4, eventually forming hexagonal lamellar Al4SiC4 with mutual accumulation between SiC particles. Introducing Al enhances the oxidation resistance of SiC. In addition, the in situ generated non-oxide is uniformly dispersed on a micro-scale and bonds SiC stably.
    • loading
    • [1]
      F. Qian, L.G. Wang, W.K Ma, et al., Application progress and prospects for kiln furniture, China Ceram., 58(2022), No. 5, p. 1.
      [2]
      J. Roy, S. Chandra, S. Das, and S. Maitra, Oxidation behaviour of silicon carbide-A review, Rev. Adv. Mater. Sci., 38(2014), No. 1, p. 29.
      [3]
      Y.J. Ma, X.Y. Meng, S.B. Yang, et al., Significant improvement of resistance to dry/water oxygen corrosion at medium and high temperatures of SiC/SiC composites upon matrix modification by Ca–Y–Al–Si–O microcrystalline glass, J. Eur. Ceram. Soc., 43(2023), No. 11, p. 4645. doi: 10.1016/j.jeurceramsoc.2023.04.016
      [4]
      H.F. Wang, H.J. Zhang, Y.B. Bi, et al., Effects of different catalysts on performance of self-bonded SiC refractories, Ceram. Int., 47(2021), No. 19, p. 27863. doi: 10.1016/j.ceramint.2021.06.215
      [5]
      N.K. Reddy, Reaction-bonded silicon carbide refractories, Mater. Chem. Phys., 76(2002), No. 1, p. 78. doi: 10.1016/S0254-0584(01)00502-8
      [6]
      H.F. Wang, Y.B. Bi, L. Han, et al., Effects of silica sol on the preparation and high-temperature mechanical properties of silicon oxynitride bonded SiC castables, Ceram. Int., 43(2017), No. 13, p. 10361. doi: 10.1016/j.ceramint.2017.05.070
      [7]
      A. Kovalčíková, J. Dusza, and P. Šajgalík, Influence of the heat treatment on mechanical properties and oxidation resistance of SiC–Si3N4 composites, Ceram. Int., 39(2013), No. 7, p. 7951. doi: 10.1016/j.ceramint.2013.03.059
      [8]
      S.W. Yu, T. Zeng, X.T. Pan, et al., Fabrication of Si3N4–SiC/SiO2 composites using 3D printing and infiltration processing, Ceram. Int., 47(2021), No. 20, p. 28218. doi: 10.1016/j.ceramint.2021.06.235
      [9]
      Y.H. Wang, W. Liu, J.X. Guo, et al. , In situ formation of Si3N4–SiC nanocomposites through polymer-derived SiAlCN ceramics and spark plasma sintering, Ceram. Int., 47(2021), No. 15, p. 22049. doi: 10.1016/j.ceramint.2021.04.225
      [10]
      P. Tatarko, M. Kašiarová, J. Dusza, and P. Šajgalík, Influence of rare-earth oxide additives on the oxidation resistance of Si3N4–SiC nanocomposites, J. Eur. Ceram. Soc., 33(2013), No. 12, p. 2259. doi: 10.1016/j.jeurceramsoc.2013.01.008
      [11]
      M. Zhang, Q.Q. Chen, Y.P. He, et al., A comparative study on high temperature oxidation behavior of SiC, SiC–BN and SiBCN monoliths, Corros. Sci., 192(2021), art. No. 109855. doi: 10.1016/j.corsci.2021.109855
      [12]
      L. Charpentier, M. Balat-Pichelin, and F. Audubert, High temperature oxidation of SiC under helium with low-pressure oxygen: Part 1: Sintered α-SiC, J. Eur. Ceram. Soc., 30(2010), No. 12, p. 2653. doi: 10.1016/j.jeurceramsoc.2010.04.025
      [13]
      L. Charpentier, M. Balat-Pichelin, H. Glénat, E. Bêche, E. Laborde, and F. Audubert, High temperature oxidation of SiC under helium with low-pressure oxygen. Part 2: CVD β-SiC, J. Eur. Ceram. Soc., 30(2010), No. 12, p. 2661. doi: 10.1016/j.jeurceramsoc.2010.04.031
      [14]
      X.C. Li, B.Q. Zhu, and T.X. Wang, Electromagnetic field effects on the formation of MgO dense layer in low carbon MgO–C refractories, Ceram. Int., 38(2012), No. 4, p. 2883. doi: 10.1016/j.ceramint.2011.11.061
      [15]
      M. Bavand-Vandchali, H. Sarpoolaky, F. Golestani-Fard, and H.R. Rezaie, Atmosphere and carbon effects on microstructure and phase analysis of in situ spinel formation in MgO–C refractories matrix, Ceram. Int., 35(2009), No. 2, p. 861. doi: 10.1016/j.ceramint.2008.03.001
      [16]
      S. Behera and R. Sarkar, Effect of different metal powder anti-oxidants on N220 nano carbon containing low carbon MgO–C refractory: An in-depth investigation, Ceram. Int., 42(2016), No. 16, p. 18484. doi: 10.1016/j.ceramint.2016.08.185
      [17]
      Y. Sun, Y. Li, H.Y. Li, M.W. Yan, S.H. Tong, and J.L. Sun, Formation mechanism of dense anti-oxidation layer in Al–Si–MgO composites sintered in air condition, Ceram. Int., 44(2018), No. 4, p. 3987. doi: 10.1016/j.ceramint.2017.11.193
      [18]
      C.H. Ma, Y. Li, W.D. Xue, P. Jiang, and Y.N. Shen, Investigation of the oxidation mechanism of an Al–Si–Al2O3 composite at 1100°C and 1550°C, Ceram. Int., 46(2020), No. 9, p. 13813. doi: 10.1016/j.ceramint.2020.02.172
      [19]
      C. Chatillon and F. Teyssandier, Thermodynamic assessment of the different steps observed during SiC oxidation, J. Eur. Ceram. Soc., 42(2022), No. 4, p. 1175. doi: 10.1016/j.jeurceramsoc.2021.11.064
      [20]
      B. Harder, N. Jacobson, and D. Myers, Oxidation transitions for SiC part II. Passive-to-active transitions, J. Am. Ceram. Soc., 96(2013), No. 2, p. 606. doi: 10.1111/jace.12104
      [21]
      Y.J. Joo, S.H. Joo, H.J. Lee, Y.J. Shim, D.G. Shin, and K.Y. Cho, Effect of impurities control on the crystallization and densification of polymer-derived SiC fibers, Nanomaterials, 11(2021), No. 11, art. No. 2933. doi: 10.3390/nano11112933
      [22]
      C.H. Ma, Y. Li, L.X. Zhang, W.D. Xue, and J.L. Sun, Formation of (Al2OC)1– x(AlN) x solid solution starting from Al–Si–Al2O3 powder matrix at 1300°C in flowing nitrogen, J. Am. Ceram. Soc., 102(2019), No. 10, p. 6349. doi: 10.1111/jace.16486
      [23]
      J.S. Han, Y. Li, C.H. Ma, Q.Y. Zheng, and X.H. Zhang, Formation mechanism of AlN–SiC solid solution with multiple morphologies in Al–Si–SiC composites under flowing nitrogen at 1300°C, J. Eur. Ceram. Soc., 42(2022), No. 14, p. 6356. doi: 10.1016/j.jeurceramsoc.2022.07.011
      [24]
      X. Chen, Y. Li, Y. Li, et al., Properties and microstructures of blast furnace carbon refractories with Al additions, Ironmaking Steelmaking, 37(2010), No. 6, p. 398. doi: 10.1179/030192310X12646889255825
      [25]
      M.W. Yan, J.Y. Zhang, Y.M. Yang, K.Q. Liu, and G.C. Sun, The phase composition and microstructural evolution of a novel MgO–C–Al–Si refractory used in bottom-blowing elements at high temperatures in flowing nitrogen, J. Asian. Ceram. Soc., 9(2021), No. 3, p. 794. doi: 10.1080/21870764.2021.1917113
      [26]
      X.X. Huang and G.W. Wen, Mechanical properties of Al4SiC4 bulk ceramics produced by solid state reaction, Ceram. Int., 33(2007), No. 3, p. 453. doi: 10.1016/j.ceramint.2005.10.009
      [27]
      D.A. Gunn, A theoretical evaluation of the stability of sialon-bonded silicon carbide in the blast furnace environment, J. Eur. Ceram. Soc., 11(1993), No. 1, p. 35. doi: 10.1016/0955-2219(93)90056-W
      [28]
      J.T. Huang, Z.H. Huang, Y.G. Liu, et al., Preparation and blast furnace slag corrosion behavior of SiC–Sialon–ZrN free-fired refractories, Ceram. Int., 40(2014), No. 7, p. 9763. doi: 10.1016/j.ceramint.2014.02.063
      [29]
      C.H. Ma, Y. Li, X.F. Wu, and Y. Gao, Synthesis mechanism of AlN–SiC solid solution reinforced Al2O3 composite by two-step nitriding of Al–Si3N4–Al2O3 compact at 1500°C, Ceram. Int., 49(2023), No. 13, p. 22022. doi: 10.1016/j.ceramint.2023.04.027
      [30]
      C.H. Ma, Y. Li, M.W. Yan, Y. Sun, and J.L. Sun, Investigation on a postmortem resin-bonded Al–Si–Al2O3 sliding gate with functional gradient feature, Ceram. Int., 44(2018), No. 6, p. 6384. doi: 10.1016/j.ceramint.2018.01.031
      [31]
      P. Bronsveld, T. Hata, T. Vystavel, et al., Comparison between carbonization of wood charcoal with Al-triisopropoxide and alumina, J. Eur. Ceram. Soc., 26(2006), No. 4-5, p. 719. doi: 10.1016/j.jeurceramsoc.2005.07.023
      [32]
      X. Yue, Y. Li, H.X. Li, C.H. Ma, and X.H. Zhang, Investigation on a postmortem Al–Al2O3–fused mullite-containing Ti2O3 sliding gate, Ceram. Int., 49(2023), No. 15, p. 26069. doi: 10.1016/j.ceramint.2023.05.161
      [33]
      J.H. Chen, Z.H. Zhang, W.J. Mi, et al., Fabrication and oxidation behavior of Al4SiC4 powders, J. Am. Ceram. Soc., 100(2017), No. 7, p. 3145. doi: 10.1111/jace.14841
      [34]
      X.M. Xing, B. Li, J.H. Chen, and X.M. Hou, Formation mechanism of large size plate-like Al4SiC4 grains by a carbothermal reduction method, CrystEngComm, 20(2018), No. 10, p. 1399. doi: 10.1039/C7CE02193C
      [35]
      M.W. Chase, NIST-JANAF Thermochemical Tables, 4th ed., American Chemical Society and the American Institute of physics for the National Institute of standards and Technology, New York, 1998.
      [36]
      I.A. Aksay and J.A. Pask, The silica-alumina system: Stable and metastable equilibria at 1.0 atmosphere, Science, 183(1974), No. 4120, p. 69. doi: 10.1126/science.183.4120.69
      [37]
      I.A. Aksaf and J.A. Pask, Stable and metastable equilibria in the system SiO2–Al2O3, J. Am. Ceram. Soc., 58(1975), p. 507. doi: 10.1111/j.1151-2916.1975.tb18770.x
      [38]
      N. Jacobson, B. Harder, and D. Myers, Oxidation transitions for SiC part I. Active-to-passive transitions, J. Am. Ceram. Soc., 96(2013), No. 3, p. 838. doi: 10.1111/jace.12108
      [39]
      G.Y. Mi, C. Liu, C.M. Wang, L.D. Xiong, and Q.B. Ouyang, The effect of Zr addition on the laser welding of SiCp/2A14Al composite, J. Mater. Res. Technol., 15(2021), p. 5175. doi: 10.1016/j.jmrt.2021.10.097
      [40]
      S.K. Nandy, N.K. Ghosh, D. Ghosh, and G.C. Das, Hydration of coked MgO–C–Al refractories, Ceram. Int., 32(2006), No. 2, p. 163. doi: 10.1016/j.ceramint.2005.01.013
      [41]
      A. Yamaguchi and S.W. Zhang, Synthesis and some properties of Al4SiC4, J. Ceram. Soc. Jpn., 103(1995), No. 1193, p. 20. doi: 10.2109/jcersj.103.20

    Catalog


    • /

      返回文章
      返回