留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 6
Jun.  2024

图(4)

数据统计

分享

计量
  • 文章访问数:  1408
  • HTML全文浏览量:  302
  • PDF下载量:  77
  • 被引次数: 0
Xiawei Yang, Tingxi Meng, Qiang Chu, Yu Su, Zhenguo Guo, Rui Xu, Wenlong Fan, Tiejun Ma, and Wenya Li, A review of linear friction welding of Ni-based superalloys, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1382-1391. https://doi.org/10.1007/s12613-023-2782-7
Cite this article as:
Xiawei Yang, Tingxi Meng, Qiang Chu, Yu Su, Zhenguo Guo, Rui Xu, Wenlong Fan, Tiejun Ma, and Wenya Li, A review of linear friction welding of Ni-based superalloys, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1382-1391. https://doi.org/10.1007/s12613-023-2782-7
引用本文 PDF XML SpringerLink
特约综述

镍基高温合金线性摩擦焊接研究进展


  • 通讯作者:

    李文亚    E-mail: liwy@nwpu.edu.cn

文章亮点

  • (1) 综述了镍基高温合金线性摩擦焊接摩擦产热和挤压变形的研究进展。
  • (2) 综述了镍基高温合金线性摩擦焊接微观组织和力学性能的研究进展。
  • (3) 综述了镍基高温合金线性摩擦焊接飞边形貌和残余应力及蠕变和疲劳的研究进展。
  • 镍基高温合金由于其优异的耐腐蚀、耐辐射、耐疲劳和高温强度高等优异性能,已成为航空航天、核能、燃气轮机等高温应用领域关键材料之一。近年来,具有近净成形特征的线性摩擦焊接的连接新技术,已广泛应用于航空和航天等领域关键零部件的制造和修复。本文综述了镍基高温合金线性摩擦焊接方面的研究成果,旨在了解镍基高温合金线性摩擦焊接过程的界面摩擦产热和金属挤压变形行为、焊接过程物理场模拟方法、接头微观组织特征、力学性能、飞边形貌特征和接头残余应力分布特征及蠕变和疲劳等服役性能。本文有助于加深工业界和学术界相关人员对线性摩擦焊接接头的变形特征、微观组织和力学性能的了解,以便在未来更好地利用和实践线性摩擦焊接技术。
  • Invited Review

    A review of linear friction welding of Ni-based superalloys

    + Author Affiliations
    • Ni-based superalloys are one of the most important materials employed in high-temperature applications within the aerospace and nuclear energy industries and in gas turbines due to their excellent corrosion, radiation, fatigue resistance, and high-temperature strength. Linear friction welding (LFW) is a new joining technology with near-net-forming characteristics that can be used for the manufacture and repair of a wide range of aerospace components. This paper reviews published works on LFW of Ni-based superalloys with the aim of understanding the characteristics of frictional heat generation and extrusion deformation, microstructures, mechanical properties, flash morphology, residual stresses, creep, and fatigue of Ni-based superalloy weldments produced with LFW to enable future optimum utilization of the LFW process.
    • loading
    • [1]
      S.L. Yang, S.F. Yang, W. Liu, et al., Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 939. doi: 10.1007/s12613-022-2549-6
      [2]
      H.H. Tayeband and S.M. Rafiaei, Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 327. doi: 10.1007/s12613-020-2211-0
      [3]
      M.H. Zhang, B.C. Zhang, Y.J. Wen, et al., Research progress on selective laser melting processing for nickel-based superalloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 369. doi: 10.1007/s12613-021-2331-1
      [4]
      E.Y. Liu, Q.S. Ma, X.T. Li, et al., Effect of two-step solid solution on microstructure and δ phase precipitation of Inconel 718 alloy, Int. J. Miner. Metall. Mater., (2024). DOI: 10.1007/s12613-024-2887-7
      [5]
      J. Kang, R.G. Li, D.Y. Wu, et al., On the low cycle fatigue behaviors of Ni-based superalloy at room temperature: Deformation and fracture mechanisms, Mater. Charact, 211(2024), art. No. 113920. doi: 10.1016/j.matchar.2024.113920
      [6]
      Y. Su, X.W. Yang, T.X. Meng, et al., Strengthening mechanism and forming control of linear friction welded GH4169 alloy joints, Chin. J. Aeronaut., 37(2024), No. 4, p. 609. doi: 10.1016/j.cja.2024.01.026
      [7]
      H.Y. Zhang and L.F. Zhang, Development overview of aeroengine integral blisk and its manufacturing technology at home and abroad, Aeronaut. Manuf. Technol., 56(2013), No. 23/24, p. 38.
      [8]
      M. Smith, L. Bichler, J. Gholipour, and P. Wanjara, Mechanical properties and microstructural evolution of in-service Inconel 718 superalloy repaired by linear friction welding, Int. J. Adv. Manuf. Technol., 90(2017), No. 5-8, p. 1931. doi: 10.1007/s00170-016-9515-2
      [9]
      H. Wu, M. Sun, and Y. Yang. Research progress in linear friction welding technology, Welding Technol., 43(2014) No. 7, p. 1.
      [10]
      Z.L. Yi, J.G. Shan, Y. Zhao, et al, Recent research progress in the mechanism and suppression of fusion welding-induced liquation cracking of nickel based superalloys, Int. J. Miner. Metall. Mater, 31(2024), No. 5, p. 1072. doi: 10.1007/s12613-024-2869-9
      [11]
      X.S. Li, D. Sukhomlinov, and Z.Q. Que, Microstructure and thermal properties of dissimilar M300–CuCr1Zr alloys by multi-material laser-based powder bed fusion, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 118. doi: 10.1007/s12613-023-2747-x
      [12]
      M.M. Chen, R.H. Shi, Z.Z. Liu, et al., Phase-field simulation of lack-of-fusion defect and grain growth during laser powder bed fusion of Inconel 718, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2224. doi: 10.1007/s12613-023-2664-z
      [13]
      Y. Su, X.W. Yang, D. Wu, et al., Controlling deformation and residual stresses in a TIG joint for Invar steel molds, J. Mater. Res. Technol., 27(2023), p. 490. doi: 10.1016/j.jmrt.2023.10.036
      [14]
      Y. Su, X.W. Yang, D. Wu, et al., Optimizing welding sequence of TIG cross-joint of Invar steel using residual stresses and deformations, J. Manuf. Process., 105(2023), p. 232. doi: 10.1016/j.jmapro.2023.09.047
      [15]
      Z.G. Guo, T.J. Ma, X.W. Yang, et al., Linear friction welding of Ti60 near-α titanium alloy: Investigating phase transformations and dynamic recrystallization mechanisms, Mater. Charact., 194(2022), art. No. 112424. doi: 10.1016/j.matchar.2022.112424
      [16]
      Z.G. Guo, T.J. Ma, W.Y. Li, et al., Intergrowth bonding mechanism and mechanical property of linear friction welded dissimilar near-alpha to near-beta titanium alloy joint, Adv. Eng. Mater., 23(2021), No. 5, art. No. 2001479. doi: 10.1002/adem.202001479
      [17]
      X.W. Yang, T.X Meng, Y. Su, et al., Evolution of microstructure and mechanical properties of cold spray additive manufactured aluminum deposit on copper substrate, Mater. Sci. Eng. A, 891(2024), art. No. 146024. doi: 10.1016/j.msea.2023.146024
      [18]
      Z.G. Guo, T.J. Ma, X.W. Yang, et al., In-situ investigation on dislocation slip concentrated fracture mechanism of linear friction welded dissimilar Ti17(α + β)/Ti17(β) titanium alloy joint, Mater. Sci. Eng. A, 872(2023), art. No. 144991. doi: 10.1016/j.msea.2023.144991
      [19]
      Z.G. Guo, T.J. Ma, X. Chen, et al., Interfacial bonding mechanism of linear friction welded dissimilar Ti2AlNb–Ti60 joint: Grain intergrowth induced by combined effects of dynamic recrystallization, phase transformation and elemental diffusion, J. Mater. Res. Technol., 24(2023), p. 5660. doi: 10.1016/j.jmrt.2023.04.184
      [20]
      Z.G. Guo, T.J. Ma, X.W. Yang, J. Li, W.Y. Li, and A. Vairis, Multi-scale analyses of phase transformation mechanisms and hardness in linear friction welded Ti17(α + β)/Ti17(β) dissimilar titanium alloy joint, Chin. J. Aeronaut., 37(2024), No. 1, p. 312. doi: 10.1016/j.cja.2023.08.018
      [21]
      X.W. Yang, S.T. Ma, Q. Chu, et al., Investigation of microstructure and mechanical properties of GH4169 superalloy joint produced by linear friction welding, J. Mater. Res. Technol., 24(2023), p. 8373. doi: 10.1016/j.jmrt.2023.05.081
      [22]
      M. Orłowska, L. Olejnik, D. Campanella, et al., Application of linear friction welding for joining ultrafine grained aluminium, J. Manuf. Process., 56(2020), p. 540. doi: 10.1016/j.jmapro.2020.05.012
      [23]
      X.W. Yang, W.Y. Li, and T.J. Ma, Finite element analysis of the effect of micro-pore defect on linear friction welding of medium carbon steel, China Weld., 23(2014), No. 1, p. 1.
      [24]
      W.Y. Li, T.J. Ma, S.Q. Yang, et al., Effect of friction time on flash shape and axial shortening of linear friction welded 45 steel, Mater. Lett., 62(2008), No. 2, p. 293. doi: 10.1016/j.matlet.2007.05.037
      [25]
      T.J. Ma, Y.G. Li, W.Y. Li, Y. Zhang, D.G. Shi, and A. Vairis, Studies of the interfacial structure of a linear friction welded Fe/Ni joint: First principles calculation and TEM validation, Mater. Charact., 129(2017), p. 60. doi: 10.1016/j.matchar.2017.04.008
      [26]
      Y.M. Li, Y.C. Liu, C.X. Liu, et al., Microstructure evolution and mechanical properties of linear friction welded S31042 heat-resistant steel, J. Mater. Sci. Technol., 34(2018), No. 4, p. 653. doi: 10.1016/j.jmst.2017.11.031
      [27]
      Y. Su, W.Y. Li, X.Y. Wang, et al., On the process variables and weld quality of a linear friction welded dissimilar joint between S31042 and S34700 austenitic steels, Adv. Eng. Mater., 21(2019), No. 7, art. No. 1801354. doi: 10.1002/adem.201801354
      [28]
      T. J. Ma, W. Y. Li, Q. Z. Xu, et al., Microstructure evolution and mechanical properties of linear friction welded 45 steel joint, Adv. Eng. Mater., 9(2007), No. 8, p. 703. doi: 10.1002/adem.200700090
      [29]
      X.W. Yang, T.X. Meng, Y. Su, et al., The effect of inclusions and pores on creep crack propagation of linear friction welded joints of GH4169 superalloy, J. Mater. Res. Technol., 29(2024), p. 4636. doi: 10.1016/j.jmrt.2024.02.154
      [30]
      M. Karadge, M. Preuss, P.J. Withers, and S. Bray, Importance of crystal orientation in linear friction joining of single crystal to polycrystalline nickel-based superalloys, Mater. Sci. Eng. A, 491(2008), No. 1-2, p. 446. doi: 10.1016/j.msea.2008.04.064
      [31]
      T.J. Ma, L.F. Tang, W.Y. Li, Y. Zhang, Y. Xiao, and A. Vairis, Linear friction welding of a solid-solution strengthened Ni-based superalloy: Microstructure evolution and mechanical properties studies, J. Manuf. Process., 34(2018), p. 442. doi: 10.1016/j.jmapro.2018.06.011
      [32]
      P.H. Geng, G.L. Qin, H. Ma, et al., Numerical modelling on the plastic flow and interfacial self-cleaning in linear friction welding of superalloys, J. Mater. Process. Technol., 296(2021), art. No. 117198. doi: 10.1016/j.jmatprotec.2021.117198
      [33]
      A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, and S. Yue, Suppressed liquation and microcracking in linear friction welded WASPALOY, Mater. Des., 36(2012), p. 113. doi: 10.1016/j.matdes.2011.11.007
      [34]
      T.J. Ma, X. Chen, W.Y. Li, X.W. Yang, Y. Zhang, and S.Q. Yang, Microstructure and mechanical property of linear friction welded nickel-based superalloy joint, Mater. Des., 89(2016), p. 85. doi: 10.1016/j.matdes.2015.09.143
      [35]
      R.R. Ye, H.Y. Li, R.G. Ding, et al., Microstructure and microhardness of dissimilar weldment of Ni-based superalloys IN718-IN713LC, Mater. Sci. Eng. A, 774(2020), art. No. 138894. doi: 10.1016/j.msea.2019.138894
      [36]
      T.J. Ma, M. Yan, X.W. Yang, W.Y. Li, and Y.J. Chao, Microstructure evolution in a single crystal nickel-based superalloy joint by linear friction welding, Mater. Des., 85(2015), p. 613. doi: 10.1016/j.matdes.2015.07.046
      [37]
      X.M. Chen, C. Lin Y., M.S. Chen, et al., Microstructural evolution of a nickel-based superalloy during hot deformation, Mater. Des., 77(2015), p. 41.
      [38]
      W.Y. Li, T.J. Ma, Y. Zhang, et al., Microstructure characterization and mechanical properties of linear friction welded Ti-6Al-4V alloy, Adv. Eng. Mater., 10(2008), No. 1-2, p. 89. doi: 10.1002/adem.200700034
      [39]
      P. Wanjara and M. Jahazi, Linear friction welding of Ti–6Al–4V: Processing, microstructure, and mechanical-property inter-relationships, Metall. Mater. Trans. A, 36(2005), No. 8, p. 2149. doi: 10.1007/s11661-005-0335-5
      [40]
      M. Karadge, M. Preuss, C. Lovell, P.J. Withers, and S. Bray, Texture development in Ti–6Al–4V linear friction welds, Mater. Sci. Eng. A, 459(2007), No. 1-2, p. 182. doi: 10.1016/j.msea.2006.12.095
      [41]
      C.C. Zhang, T.C. Zhang, Y.J. Ji, and J.H. Huang, Effects of heat treatment on microstructure and microhardness of linear friction welded dissimilar Ti alloys, Trans. Nonferrous Met. Soc. China, 23(2013), No. 12, p. 3540. doi: 10.1016/S1003-6326(13)62898-8
      [42]
      J. Romero, M.M. Attallah, M. Preuss, M. Karadge, and S.E. Bray, Effect of the forging pressure on the microstructure and residual stress development in Ti–6Al–4V linear friction welds, Acta Mater., 57(2009), No. 18, p. 5582. doi: 10.1016/j.actamat.2009.07.055
      [43]
      E. Dalgaard, P. Wanjara, J. Gholipour, X. Cao, and J.J. Jonas, Linear friction welding of a near-β titanium alloy, Acta Mater., 60(2012), No. 2, p. 770. doi: 10.1016/j.actamat.2011.04.037
      [44]
      W.Y. Li, T.J. Ma, and S.Q. Yang, Microstructure evolution and mechanical properties of linear friction welded Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17) titanium alloy joints, Adv. Eng. Mater., 12(2010), No. 1-2, p. 35. doi: 10.1002/adem.200900185
      [45]
      X. Chen, F.Q. Xie, T.J. Ma, W.Y. Li, and X.Q. Wu, Oxidation behavior of three different zones of linear friction welded Ti2AlNb alloy, Adv. Eng. Mater., 18(2016), No. 11, p. 1944. doi: 10.1002/adem.201600529
      [46]
      H. Peng, Y.X. Wu, T. Zhang, S.Y. Chen, and C. Zhang, Residual stresses in linear friction welding of TC17 titanium alloy considering phase fraction, Trans. Nonferrous Met. Soc. China, 34(2024), No. 1, p. 184. doi: 10.1016/S1003-6326(23)66390-3
      [47]
      F. Rotundo, A. Marconi, A. Morri, and A. Ceschini, Dissimilar linear friction welding between a SiC particle reinforced aluminum composite and a monolithic aluminum alloy: Microstructural, tensile and fatigue properties, Mater. Sci. Eng. A, 559(2013), p. 852. doi: 10.1016/j.msea.2012.09.033
      [48]
      A. Lis, H. Mogami, T. Matsuda, et al., Hardening and softening effects in aluminium alloys during high-frequency linear friction welding, J. Mater. Process. Technol., 255(2018), p. 547. doi: 10.1016/j.jmatprotec.2018.01.002
      [49]
      H. Mogami, T. Matsuda, T. Sano, R. Yoshida, H. Hori, and A. Hirose, High-frequency linear friction welding of aluminum alloys, Mater. Des., 139(2018), p. 457. doi: 10.1016/j.matdes.2017.11.043
      [50]
      G. Buffa, M. Cammalleri, D. Campanella, and L. Fratini, Shear coefficient determination in linear friction welding of aluminum alloys, Mater. Des., 82(2015), p. 238. doi: 10.1016/j.matdes.2015.05.070
      [51]
      X.W. Yang, W.Y. Li, J.L. Li, et al., Finite element modeling of the linear friction welding of GH4169 superalloy, Mater. Des., 87(2015), p. 215. doi: 10.1016/j.matdes.2015.08.036
      [52]
      A. Vairis and M. Frost, Modelling the linear friction welding of titanium blocks, Mater. Sci. Eng. A, 292(2000), No. 1, p. 8. doi: 10.1016/S0921-5093(00)01036-4
      [53]
      A. Vairis and M. Frost, High frequency linear friction welding of a titanium alloy, Wear, 217(1998), No. 1, p. 117. doi: 10.1016/S0043-1648(98)00145-8
      [54]
      A. Vairis and M. Frost, On the extrusion stage of linear friction welding of Ti 6Al 4V, Mater. Sci. Eng. A, 271(1999), p. 477. doi: 10.1016/S0921-5093(99)00449-9
      [55]
      A.R. McAndrew, P.A. Colegrove, C. Bühr, B. C.D. Flipo, and A. Vairis, A literature review of Ti–6Al–4V linear friction welding, Prog. Mater. Sci., 92 (2018), p. 225. doi: 10.1016/j.pmatsci.2017.10.003
      [56]
      R. Turner, J.C. Gebelin, R.M. Ward, and R.C. Reed, Linear friction welding of Ti–6Al–4V: Modelling and validation, Acta Mater., 59(2011), No. 10, p. 3792. doi: 10.1016/j.actamat.2011.02.028
      [57]
      J.T. Liu, J.L. Li, X.G. Li, et al., Fatigue fracture behavior of a Ti17 joint under various heat treatment specifications prepared by linear friction welding, Mater. Charact., 205(2023), art. No. 113318. doi: 10.1016/j.matchar.2023.113318
      [58]
      R. Turner, R.M. Ward, R. March, and R.C. Reed, The magnitude and origin of residual stress in Ti–6Al–4V linear friction welds: An investigation by validated numerical modeling, Metall. Mater. Trans. B, 43(2012), No. 1, p. 186. doi: 10.1007/s11663-011-9563-9
      [59]
      X. Zhang, J.J. Zhang, Y.K. Yao, et al., Anomalous enhancing effects of electric pulse treatment on strength and ductility of TC17 linear friction welding joints, J. Mater. Sci. Technol, 203(2024), p. 155. doi: 10.1016/j.jmst.2024.04.008
      [60]
      Z.Y. Dang, G.L. Qin, H. Ma, and P.H. Geng, Multi-scale characterizations of microstructure and mechanical properties of Ti6242 alloy linear friction welded joint with post-welded heat treatment, Trans. Nonferrous Met. Soc. China, 33(2023), No. 4, p. 1114. doi: 10.1016/S1003-6326(23)66169-2
      [61]
      T.J. Ma, W.Y. Li, and S.Y. Yang, Impact toughness and fracture analysis of linear friction welded Ti–6Al–4V alloy joints, Mater. Des., 30(2009), No. 6, p. 2128. doi: 10.1016/j.matdes.2008.08.029
      [62]
      W.Y. Li, H. Wu, T.J. Ma, C.L. Yang, and Z.W. Chen, Influence of parent metal microstructure and post-weld heat treatment on microstructure and mechanical properties of linear friction welded Ti–6Al–4V joint, Adv. Eng. Mater., 14(2012), No. 5, p. 312. doi: 10.1002/adem.201100203
      [63]
      M. Grujicic, G. Arakere, B. Pandurangan, C.F. Yen, and B.A. Cheeseman, Process modeling of Ti–6Al–4V linear friction welding (LFW), J. Mater. Eng. Perform., 21(2012), No. 10, p. 2011. doi: 10.1007/s11665-011-0097-8
      [64]
      P. Frankel, M. Preuss, A. Steuwer, P.J. Withers, and S. Bray, Comparison of residual stresses in Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo linear friction welds, Mater. Sci. Technol., 25(2009), No. 5, p. 640. doi: 10.1179/174328408X332825
      [65]
      X.W. Yang, W.Y. Li, J. Li, T.J. Ma, and J. Guo, FEM analysis of temperature distribution and experimental study of microstructure evolution in friction interface of GH4169 superalloy, Mater. Des., 84(2015), p. 133. doi: 10.1016/j.matdes.2015.06.123
      [66]
      X.W. Yang, W.Y. Li, Y. Feng, S.Q. Yu, and B. Xiao, Physical simulation of interfacial microstructure evolution for hot compression bonding behavior in linear friction welded joints of GH4169 superalloy, Mater. Des., 104(2016), p. 436. doi: 10.1016/j.matdes.2016.05.013
      [67]
      X.W. Yang, W.Y. Li, J. Ma, et al., Thermo-physical simulation of the compression testing for constitutive modeling of GH4169 superalloy during linear friction welding, J. Alloys Compd., 656(2016), p. 395. doi: 10.1016/j.jallcom.2015.09.267
      [68]
      P.H. Geng, G.L. Qin, J. Zhou, and Z.D. Zou, Hot deformation behavior and constitutive model of GH4169 superalloy for linear friction welding process, J. Manuf. Process., 32(2018), p. 469. doi: 10.1016/j.jmapro.2018.03.017
      [69]
      G.L. Qin, P.H. Geng, J. Zhou, and Z.D. Zou, Modeling of thermo-mechanical coupling in linear friction welding of Ni-based superalloy, Mater. Des., 172(2019), art. No. 107766. doi: 10.1016/j.matdes.2019.107766
      [70]
      W.Y. Li, T.J. Ma, and J.L. Li, Numerical simulation of linear friction welding of titanium alloy: Effects of processing parameters, Mater. Des., 31(2010), No. 3, p. 1497. doi: 10.1016/j.matdes.2009.08.023
      [71]
      W.Y. Li, S.X. Shi, F.F. Wang, et al., Heat reflux in flash and its effect on joint temperature history during linear friction welding of steel, Int. J. Therm. Sci., 67(2013), p. 192. doi: 10.1016/j.ijthermalsci.2012.12.004
      [72]
      X. Song, M. Xie, F. Hofmann, et al., Residual stresses in Linear Friction Welding of aluminium alloys, Mater. Des., 50(2013), p. 360. doi: 10.1016/j.matdes.2013.03.051
      [73]
      A.R. McAndrew, P.A. Colegrove, A.C. Addison, B.C.D. Flipo, M.J. Russell, and L.A. Lee, Modelling of the workpiece geometry effects on Ti–6Al–4V linear friction welds, Mater. Des., 87(2015), p. 1087. doi: 10.1016/j.matdes.2015.09.080
      [74]
      A.R. McAndrew, P.A. Colegrove, A.C. Addison, B.C.D. Flipo, and M.J. Russell, Modelling the influence of the process inputs on the removal of surface contaminants from Ti–6Al–4V linear friction welds, Mater. Des., 66(2015), p. 183. doi: 10.1016/j.matdes.2014.10.058
      [75]
      P. Effertz, F. Fuchs, and N. Enzinger, 3D modelling of flash formation in linear friction welded 30CrNiMo8 steel chain, Metals, 7(2017), No. 10, art. No. 449. doi: 10.3390/met7100449
      [76]
      P. Jedrasiak, H.R. Shercliff, A.R. McAndrew, and P.A. Colegrove, Thermal modelling of linear friction welding, Mater. Des., 156(2018), p. 362. doi: 10.1016/j.matdes.2018.06.043
      [77]
      P.S. Effertz, F. Fuchs, and N. Enzinger, The influence of process parameters in linear friction welded 30CrNiMo8 small cross-section: A modelling approach, Sci. Technol. Weld. Join., 24(2019), No. 2, p. 121. doi: 10.1080/13621718.2018.1492210
      [78]
      J.S.Müller, M. Rettenmayr, D. Schneefeld, O. Roder, and W. Fried, FEM simulation of the linear friction welding of titanium alloys, Comput. Mater. Sci., 48(2010), No. 4, p. 749. doi: 10.1016/j.commatsci.2010.03.026
      [79]
      L. Fratini, G. Buffa, D. Campanella, and D. La Spisa, Investigations on the linear friction welding process through numerical simulations and experiments, Mater. Des., 40(2012), p. 285. doi: 10.1016/j.matdes.2012.03.058
      [80]
      M. Grujicic, R. Yavari, J.S. Snipes, S. Ramaswami, C.F. Yen, and B.A. Cheeseman, Linear friction welding process model for carpenter custom 465 precipitation-hardened martensitic stainless steel, J. Mater. Eng. Perform., 23(2014), No. 6, p. 2182. doi: 10.1007/s11665-014-0985-9
      [81]
      W.Y. Li, F.F. Wang, S.X. Shi, T.J. Ma, J.L. Li, and A. Vairis, 3D finite element analysis of the effect of process parameters on linear friction welding of mild steel, J. Mater. Eng. Perform., 23(2014), No. 11, p. 4010. doi: 10.1007/s11665-014-1197-z
      [82]
      M. Grujicic, R. Yavari, J.S. Snipes, and S. Ramaswami, A linear friction welding process model for Carpenter Custom 465 precipitation-hardened martensitic stainless steel: a weld microstructure-evolution analysis, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 229(2015), p. 1997. doi: 10.1177/0954405414542137
      [83]
      G. Buffa, D. Campanella, S. Pellegrino, and L. Fratini, Weld quality prediction in linear friction welding of AA6082-T6 through an integrated numerical tool, J. Mater. Process. Technol., 231(2016), p. 389. doi: 10.1016/j.jmatprotec.2016.01.012
      [84]
      A.R. McAndrew, P.A. Colegrove, B.C.D. Flipo, and C. Bühr, 3D modelling of Ti–6Al–4V linear friction welds, Sci. Technol. Weld. Join., 22(2017), No. 6, p. 496. doi: 10.1080/13621718.2016.1263439
      [85]
      C. Bühr, B. Ahmad, P.A. Colegrove, A.R. McAndrew, H. Guo, and X. Zhang, Prediction of residual stress within linear friction welds using a computationally efficient modelling approach, Mater. Des., 139(2018), p. 222. doi: 10.1016/j.matdes.2017.11.013
      [86]
      D. Baffari, G. Buffa, D. Campanella, L. Fratini, and F. Micari, Single block 3D numerical model for linear friction welding of titanium alloy, Sci. Technol. Weld. Join., 24(2019), No. 2, p. 130. doi: 10.1080/13621718.2018.1492211
      [87]
      P.H. Geng, G.L. Qin, J. Zhou, and Z.D. Zou, Finite element models of friction behaviour in linear friction welding of a Ni-based superalloy, Int. J. Mech. Sci., 152(2019), p. 420. doi: 10.1016/j.ijmecsci.2019.01.014
      [88]
      K. Yonekura, T. Shinohara, and K. Masaki, Cost-effective estimation of flash extrusion and defects in linear friction welding using Voronoi diagrams, J. Manuf. Process., 68(2021), p. 158. doi: 10.1016/j.jmapro.2021.07.012
      [89]
      X.W. Yang, W.Y. Li, Y.X. Xu, X.R. Dong, K.W. Hu, and Y.F. Zou, Performance of two different constitutive models and microstructural evolution of GH4169 superalloy, Math. Biosci. Eng., 16(2019), No. 2, p. 1034. doi: 10.3934/mbe.2019049
      [90]
      A. Vairis and N. Christakis, The development of a continuum framework for friction welding processes with the aid of micro-mechanical parameterisations, Int. J. Model. Identif. Contr., 2(2007), No. 4, art. No. 347. doi: 10.1504/IJMIC.2007.016417
      [91]
      P.H. Geng, G.L. Qin, and J. Zhou, A computational modeling of fully friction contact-interaction in linear friction welding of Ni-based superalloys, Mater. Des., 185(2020), art. No. 108244. doi: 10.1016/j.matdes.2019.108244
      [92]
      P.H. Geng, G.L. Qin, C.G. Li, H. Wang, and J. Zhou, Study on the importance of thermo-elastic effects in FE simulations of linear friction welding, J. Manuf. Process., 56(2020), p. 602. doi: 10.1016/j.jmapro.2020.05.051
      [93]
      P.H. Geng, H. Ma, M.X. Wang, et al., Dissimilar linear friction welding of Ni-based superalloys, Int. J. Mach. Tools Manuf., 191(2023), art. No. 104062. doi: 10.1016/j.ijmachtools.2023.104062
      [94]
      M. Javidikia, M. Sadeghifar, H. Champliaud, and M. Jahazi, Grain size and temperature evolutions during linear friction welding of Ni-base superalloy Waspaloy: Simulations and experimental validations, J. Adv. Join. Process., 8(2023), art. No. 100150. doi: 10.1016/j.jajp.2023.100150
      [95]
      F. Masoumi, D. Shahriari, H. Monajati, et al., Linear friction welding of AD730™ Ni-base superalloy: Process-microstructure-property interactions, Mater. Des., 183(2019), art. No. 108117. doi: 10.1016/j.matdes.2019.108117
      [96]
      S. Tabaie, F. Rézaï-Aria, B.C.D. Flipo, and M. Jahazi, Grain size and misorientation evolution in linear friction welding of additively manufactured IN718 to forged superalloy AD730™, Mater. Charact., 171(2021), art. No. 110766. doi: 10.1016/j.matchar.2020.110766
      [97]
      S. Tabaie, Farhad R. Aria, B.C.D. Flipo, and M. Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730TM: Evolution of strengthening phases. J. Matei. Sci. Technol., 96(2022), p. 248. doi: 10.1016/j.jmst.2021.03.086
      [98]
      P.H. Geng, G.L. Qin, T.Y. Li, J. Zhou, Z.D. Zou, and F. Yang, Microstructural characterization and mechanical property of GH4169 superalloy joints obtained by linear friction welding, J. Manuf. Process., 45(2019), p. 100. doi: 10.1016/j.jmapro.2019.06.032
      [99]
      P.H. Geng, G.L. Qin, H. Ma, J. Zhou, and N.S. Ma, Linear friction welding of dissimilar Ni-based superalloys: Microstructure evolution and thermo-mechanical interaction, J. Mater. Res. Technol., 11(2021), p. 633. doi: 10.1016/j.jmrt.2021.01.036
      [100]
      A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, and S. Yue, Analysis of integrity and microstructure of linear friction welded Waspaloy, Mater. Charact., 104(2015), p. 149. doi: 10.1016/j.matchar.2015.04.011
      [101]
      M. Smith, J.B. Levesque, L. Bichler, D. Sediako, J. Gholipour, and P. Wanjara, Residual stress analysis in linear friction welded in-service Inconel 718 superalloy via neutron diffraction and contour method approaches, Mater. Sci. Eng. A, 691(2017), p. 168. doi: 10.1016/j.msea.2017.03.038
      [102]
      F. Masoumi, L. Thébaud, D. Shahriari, et al., High temperature creep properties of a linear friction welded newly developed wrought Ni-based superalloy, Mater. Sci. Eng. A, 710(2018), p. 214. doi: 10.1016/j.msea.2017.10.091
      [103]
      X.W. Yang, C. Peng, T.J. Ma, et al., Finite element analysis of fatigue crack growth of linear friction welded superalloy joints, Acta Aeronaut. Astronaut. Sin., 43(2022), No. 2, art. No. 625004.
      [104]
      J.W. Chen, E. Salvati, F. Uzun, et al., An experimental and numerical analysis of residual stresses in a TIG weldment of a single crystal nickel-base superalloy, J. Manuf. Process., 53(2020), p. 190. doi: 10.1016/j.jmapro.2020.02.007
      [105]
      H. Pasiowiec, B. Dubiel, R. Dziurka, et al., Effect of creep deformation on the microstructure evolution of Inconel 625 nickel-based superalloy additively manufactured by laser powder bed fusion, Mater. Sci. Eng. A, 887(2023), art. No. 145742. doi: 10.1016/j.msea.2023.145742
      [106]
      S.M. Wen, Z.C. Liu, D. Mi, S.H. Yang, B.C. Li, and C. Jiang, Novel fatigue life prediction method of a Ni-based superalloy welded joint considering defect and temperature, Int. J. Fatigue, 177(2023), art. No. 107924. doi: 10.1016/j.ijfatigue.2023.107924

    Catalog


    • /

      返回文章
      返回