留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(15)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  413
  • HTML全文浏览量:  182
  • PDF下载量:  31
  • 被引次数: 0
Yan Miao, Guangke Ye, and Guofan Zhang, Effect of dissolved-oxygen on the flotation behavior of pyrite at high altitude area, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2148-2158. https://doi.org/10.1007/s12613-023-2784-5
Cite this article as:
Yan Miao, Guangke Ye, and Guofan Zhang, Effect of dissolved-oxygen on the flotation behavior of pyrite at high altitude area, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2148-2158. https://doi.org/10.1007/s12613-023-2784-5
引用本文 PDF XML SpringerLink
研究论文

高海拔地区低溶解氧环境下黄铁矿浮选行为研究


  • 通讯作者:

    张国范    E-mail: moonwalker00@163.com

文章亮点

  • (1) 设计并组装了一台浮选设备,以模拟不同海拔高度的浮选气氛
  • (2) 建立海拔与硫化矿浮选效果相关性,扩展了传统硫化矿浮选基础理论应用环境
  • (3) 验证了黄铁矿浮选需要适度氧化,发现高海拔(4600 m)环境有利于其浮选
  • (4) 在高海拔气氛条件下,采用接触角测量、XPS、FT-IR、UV-vis、AFM等方法开展浮选理论研究。
  • 随着矿产资源不断向高海拔地区开发,非常规体系下硫化矿浮选研究受到重视。硫化矿适度氧化有利于浮选已成为共识,但具体适宜溶解氧值尚无定论,高海拔地区低溶氧环境下硫化矿浮选研究较少。本文设计并组装了大气模拟浮选设备,通过控制空气中 N2/O2 分压,模拟黄铁矿在高海拔地区的浮选过程。利用 X 射线光电子能谱(XPS)、原子力显微镜(AFM)、傅立叶变换红外光谱仪(FT-IR)、紫外-可见分光光度计、ZETA 电位和接触角测量揭示了高海拔(4600 m DO = 4.0 mg/L)条件下黄铁矿表面氧化和药剂吸附的影响。纯矿物浮选结果表明,高海拔低溶解氧环境有利于黄铁矿的浮选。接触角测量和 XPS 分析表明,高海拔大气减缓了黄铁矿表面的氧化,促进了 S2–n/S0 的生成,并增强了表面疏水性。溶液化学计算和Zeta电位分析表明,气氛对黄铁矿吸附形式的影响较小,不同气氛条件下均产生双黄药吸附,吸附异丁基黄药(SIBX)后电位明显偏移,高海拔大气下Zeta电位更低,药剂吸附量更大。傅立叶变换红外光谱(FT-IR)、紫外可见光光谱(UV-vis)和原子力显微镜(AFM)分析结果表明,在高海拔环境下,黄铁矿表面吸附了较多捕收剂,且吸附在黄铁矿表面呈柱状/块状网状结构。实验研究结果揭示了在高海拔地区以较少的捕收剂用量即可轻松浮选硫化矿的原因,证实了溶解氧–pH联合调节有利于实现更高效的黄铁矿浮选。
  • Research Article

    Effect of dissolved-oxygen on the flotation behavior of pyrite at high altitude area

    + Author Affiliations
    • With the continuous development of mineral resources to high altitude areas, the study of sulfide ore flotation in unconventional systems has been emphasized. There is a consensus that moderate oxidation of sulfide ore is beneficial to flotation, but the specific suitable dissolved oxygen value is inconclusive, and there are few studies on sulfide ore flotation under low dissolved oxygen environment at high altitude. In this paper, we designed and assembled an atmosphere simulation flotation equipment to simulate the flotation of pyrite at high altitude by controlling the partial pressure of N2/O2 and dissolved oxygen under atmospheric conditions. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), Fourier transform infrared spectrometer (FT-IR), UV-vis spectrophotometer, zeta potential, and contact angle measurements were used to reveal the effects of surface oxidation and agent adsorption on pyrite at high altitude (4600 m dissolved oxygen (DO) = 4.0 mg/L). The results of pure mineral flotation indicated that the high altitude and low dissolved oxygen environment is favorable for pyrite flotation. Contact angle measurements and XPS analysis showed that the high altitude atmosphere slows down the oxidation of pyrite surface, facilitates ${\rm S}_n^{2-} $/S0 production and enhances surface hydrophobicity. Electrochemical calculations and zeta potential analysis showed that the influence of atmosphere on the form of pyrite adsorption is small, and the different atmospheric conditions are consistent with dixanthogen electrochemical adsorption, with lower Zeta potential under high altitude atmosphere and significant potential shift after sodium isobutyl xanthate (SIBX) adsorption. The results of FT-IR, UV-vis, and AFM analysis showed that SIBX adsorbed more on the surface of pyrite under high altitude atmosphere and adsorbed on the surface in a mesh structure composed of column/block. The results of the experimental study revealed the reasons for the easy flotation of sulfide ores at high altitude with less collector dosage, and confirmed that the combined DO–pH regulation is beneficial to achieve more efficient flotation of pyrite.
    • loading
    • [1]
      S.C. Lu, Advances in flotation theory for sulphide ores, Metallic Ore Dressing Abroad, (1974), No. 6, p. 30.
      [2]
      N. Arbiter, C.C. Harris, and R.F. Yap, The air flow number in flotation machine scale-up, Int. J. Miner. Process., 3(1976), No. 3, p. 257. doi: 10.1016/0301-7516(76)90005-3
      [3]
      X.P. Niu, Correlation of Surface Oxidation of Galena , Chalcopyrite and Pyrite with Their Floatability [Dissertation], University of Chinese Academy of Sciences, Beijing, 2019, p. 70.
      [4]
      H.P. Zhao, X.P. Niu, B.X. Dong, X.B. Jia, and R.M. Ruan, Investigation on the correlation between ferrous ion and the floatability of pyrite with different oxidation degrees, Miner. Eng., 184(2022), art. No. 107636. doi: 10.1016/j.mineng.2022.107636
      [5]
      T. Hirajima, H. Miki, G.P.W. Suyantara, et al., Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation, Miner. Eng., 100(2017), p. 83. doi: 10.1016/j.mineng.2016.10.007
      [6]
      A. Mazumdar, T. Goldberg, and H. Strauss, Abiotic oxidation of pyrite by Fe(III) in acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments, Chem. Geol., 253(2008), No. 1-2, p. 30. doi: 10.1016/j.chemgeo.2008.03.014
      [7]
      J.R. Mycroft, H.W. Nesbitt, and A.R. Pratt, X-ray photoelectron and Auger electron spectroscopy of air-oxidized pyrrhotite: Distribution of oxidized species with depth, Geochim. Cosmochim. Acta, 59(1995), No. 4, p. 721. doi: 10.1016/0016-7037(94)00352-M
      [8]
      Y.C. Liu, Y.Q. Li, J.H. Chen, D. Kang, and X. Yang, Influence of sulfur vacancy on pyrite oxidization by water and oxygen molecules, Colloids Surf. A, 634(2022), art. No. 127954. doi: 10.1016/j.colsurfa.2021.127954
      [9]
      M.B.M. Monte, F.F. Lins, and J.F. Oliveira, Selective flotation of gold from pyrite under oxidizing conditions, Int. J. Miner. Process., 51(1997), No. 1-4, p. 255. doi: 10.1016/S0301-7516(97)00018-5
      [10]
      W.Z. Yin, J.W. Xue, D. Li, Q.Y. Sun, J. Yao, and S. Huang, Flotation of heavily oxidized pyrite in the presence of fine digenite particles, Miner. Eng., 115(2018), p. 142. doi: 10.1016/j.mineng.2017.10.016
      [11]
      S.M. Bulatovic, Handbook of Flotation Reagents, Amsterdam: Elsevier, (2007), p. 235.
      [12]
      C.J. Martin, S.R. Rao, J.A. Finch, and M. Leroux, Complex sulphide ore processing with pyrite flotation by nitrogen, Int. J. Miner. Process., 26(1989), No. 1-2, p. 95. doi: 10.1016/0301-7516(89)90045-8
      [13]
      S. Aghazadeh, S.K. Mousavinezhad, and M. Gharabaghi, Chemical and colloidal aspects of collectorless flotation behavior of sulfide and non-sulfide minerals, Adv. Colloid Interface Sci., 225(2015), p. 203. doi: 10.1016/j.cis.2015.09.007
      [14]
      W.Q. Qin, X.J. Wang, L.Y. Ma, et al., Electrochemical characteristics and collectorless flotation behavior of galena: With and without the presence of pyrite, Miner. Eng., 74(2015), p. 99. doi: 10.1016/j.mineng.2015.01.010
      [15]
      W.J. Zhang, X. Jin, Z.T. Feng, et al., Collectorless flotation separation of molybdenite from complex sulfide minerals employing a bi-carbonyl depressant, Sep. Purif. Technol., 322(2023), art. No. 124207. doi: 10.1016/j.seppur.2023.124207
      [16]
      D.W. Clark, A.J.H. Newell, G.F. Chilman, and P.G. Capps, Improving flotation recovery of copper sulphides by nitrogen gas and sulphidisation conditioning, Miner. Eng., 13(2000), No. 12, p. 1197. doi: 10.1016/S0892-6875(00)00104-7
      [17]
      B. Wiencke, A proposed new model for the prediction of latitude-dependent atmospheric pressures at altitude, Sci. Technol. Built Environ., 27(2021), No. 9, p. 1221. doi: 10.1080/23744731.2021.1949947
      [18]
      R.M. Rosenberg and W.L. Peticolas, Henry’s law: A retrospective, J. Chem. Educ., 81(2004), No. 11, art. No. 1647. doi: 10.1021/ed081p1647
      [19]
      R. Sander, Compilation of Henry’s law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15(2015), No. 8, p. 4399. doi: 10.5194/acp-15-4399-2015
      [20]
      K. Jiang, Y.X. Han, J. Liu, Y. Wang, W.C. Ge, and D.J. Zhang, Experimental and theoretical study of the effect of pH level on the surface properties and floatability of pyrite, Appl. Surf. Sci., 615(2023), art. No. 156350. doi: 10.1016/j.apsusc.2023.156350
      [21]
      Y.F. Mu, Y.P. Cheng, and Y.J. Peng, The interaction of grinding media and collector in pyrite flotation at alkaline pH, Miner. Eng., 152(2020), art. No. 106344. doi: 10.1016/j.mineng.2020.106344
      [22]
      N. Nirmalkar, A.W. Pacek, and M. Barigou, On the existence and stability of bulk nanobubbles, Langmuir, 34(2018), No. 37, p. 10964. doi: 10.1021/acs.langmuir.8b01163
      [23]
      N. Anton, P. Pierrat, G.A. Brou, et al., The pH-induced specific area changes of unsaturated lipids deposited onto a bubble interface, Langmuir, 37(2021), No. 8, p. 2586. doi: 10.1021/acs.langmuir.0c03046
      [24]
      P. Forson, M. Zanin, W. Skinner, and R. Asamoah, Differential flotation of pyrite and Arsenopyrite: Effect of pulp aeration and the critical importance of collector concentration, Miner. Eng., 178(2022), art. No. 107421. doi: 10.1016/j.mineng.2022.107421
      [25]
      S.H. Xu, M. Zanin, W. Skinner, and S. Brito e Abreu, Surface chemistry of oxidised pyrite during grinding: ToF-SIMS and XPS surface analysis, Miner. Eng., 170(2021), art. No. 106992. doi: 10.1016/j.mineng.2021.106992
      [26]
      D.Z. Liu, G.F. Zhang, and B.B. Li, Electrochemical and XPS investigations on the galvanic interaction between pentlandite and pyrrhotite in collectorless flotation system, Miner. Eng., 190(2022), art. No. 107916. doi: 10.1016/j.mineng.2022.107916
      [27]
      S. Mattila, J.A. Leiro, and M. Heinonen, XPS study of the oxidized pyrite surface, Surf. Sci., 566-568(2004), p. 1097. doi: 10.1016/j.susc.2004.06.058
      [28]
      Y.F. Cai, Y.G. Pan, J.Y. Xue, Q.F. Sun, G.Z. Su, and X. Li, Comparative XPS study between experimentally and naturally weathered pyrites, Appl. Surf. Sci., 255(2009), No. 21, p. 8750. doi: 10.1016/j.apsusc.2009.06.028
      [29]
      W. Chimonyo, K.C. Corin, J.G. Wiese, and C.T. O’Connor, Redox potential control during flotation of a sulphide mineral ore, Miner. Eng., 110(2017), p. 57. doi: 10.1016/j.mineng.2017.04.011
      [30]
      A.L. Valdivieso, A.A.S. López, and S. Song, On the cathodic reaction coupled with the oxidation of xanthates at the pyrite/aqueous solution interface, Int. J. Miner. Process., 77(2005), No. 3, p. 154. doi: 10.1016/j.minpro.2005.06.006
      [31]
      A.L. Valdivieso, T.C. Cervantes, S. Song, A.R. Cabrera, and J.S. Laskowski, Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector, Miner. Eng., 17(2004), No. 9, p. 1001.
      [32]
      R.S. Multani, H. Williams, B. Johnson, R.H. Li, and K.E. Waters, The effect of superstructure on the zeta potential, xanthate adsorption, and flotation response of pyrrhotite, Colloids Surf. A, 551(2018), p. 108. doi: 10.1016/j.colsurfa.2018.04.057
      [33]
      S. Zhang, Y.J. Xian, S.M. Wen, G.Y. Liang, and Q. Geng, Contribution of ammonia in xanthates adsorption onto copper oxide mineral surface in high-alkaline solution, Appl. Surf. Sci., 630(2023), art. No. 157294. doi: 10.1016/j.apsusc.2023.157294
      [34]
      Y.H. Zhang, Z. Cao, Y.D. Cao, and C.Y. Sun, FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces, J. Mol. Struct., 1048(2013), p. 434. doi: 10.1016/j.molstruc.2013.06.015
      [35]
      G. Bulut and S. Atak, Role of dixanthogen on pyrite flotation: Solubility, adsorption studies and Eh, FTIR measurements, Min. Metall. Explor., 19(2002), No. 2, p. 81.
      [36]
      J. Yu, Y.Y. Ge, and X.W. Cai, The desulfurization of magnetite ore by flotation with a mixture of xanthate and dixanthogen, Minerals, 6(2016), No. 3, art. No. 70. doi: 10.3390/min6030070
      [37]
      Y. Ma, M. Yang, L. Tang, et al., Flotation separation mechanism for secondary copper sulfide minerals and pyrite using novel collector ethyl isobutyl xanthogenic acetate, Colloids Surf. A, 634(2022), art. No. 128010. doi: 10.1016/j.colsurfa.2021.128010
      [38]
      J. Wu, B.Q. Yang, R. Martin, et al., Anisotropic adsorption of xanthate species on molybdenite faces and edges and its implication on the flotation of molybdenite fines, Miner. Eng., 207(2024), art. No. 108571. doi: 10.1016/j.mineng.2023.108571
      [39]
      Q. Zhang, Y.H. Hu, G.H. Gu,and Z.H. Nie, Electrochemical flotation of ethyl xanthate-pyrrhotite system, Trans. Nonferrous Met. Soc. China, 14(2004), No. 6, p. 1174.
      [40]
      R. Woods, C.I. Basilio, D.S. Kim, and R.H. Yoon, Ethyl xanthate chemisorption isotherms and Eh-pH diagrams for the silver+water+ethyl xanthate system, J. Electroanal. Chem., 328(1992), No. 1-2, p. 179. doi: 10.1016/0022-0728(92)80177-6
      [41]
      S. Zhang, Y.J. Xian, S.M. Wen, and G.Y. Liang, Enhancement of xanthate adsorption on lead-modified and sulfurized smithsonite surface in the presence of ammonia, Miner. Eng., 189(2022), art. No. 107872. doi: 10.1016/j.mineng.2022.107872
      [42]
      Y.H. Zhang, L.M. Wu, P.P. Huang, Q. Shen, and Z.X. Sun, Determination and application of the solubility product of metal xanthate in mineral flotation and heavy metal removal in wastewater treatment, Miner. Eng., 127(2018), p. 67. doi: 10.1016/j.mineng.2018.07.016
      [43]
      T.G. Mayerhöfer and J. Popp, Beer’s law derived from electromagnetic theory, Spectrochim. Acta Part A, 215(2019), p. 345. doi: 10.1016/j.saa.2019.02.103
      [44]
      R. Mermillod-Blondin, M. Kongolo, P. De Donato, et al., Pyrite flotation with Xanthate under alkaline conditions-Application to environmental desulfurisation, [in] Centenary of Flotation Symposium, Brisbane, 2005, p. 683.

    Catalog


    • /

      返回文章
      返回