Cite this article as: |
Peixiong Zhang, Enhui Wang, Jingjing Liu, Tao Yang, Hailong Wang, and Xinmei Hou, Porous high-entropy rare-earth phosphate (REPO4, RE = La, Sm, Eu, Ce, Pr and Gd) ceramics with excellent thermal insulation performance via pore structure tailoring, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1651-1658. https://doi.org/10.1007/s12613-023-2788-1 |
王恩会 E-mail: wangenhui@ustb.edu.cn
侯新梅 E-mail: houxinmeiustb@ustb.edu.cn
[1] |
J. Yang, X. Qian, W. Pan, et al., Diffused lattice vibration and ultralow thermal conductivity in the binary Ln–Nb–O oxide system, Adv. Mater., 31(2019), No. 24, art. No. 1808222. doi: 10.1002/adma.201808222
|
[2] |
R.W. Yang, Y.P. Liang, J. Xu, et al., Rare-earth-niobate high-entropy ceramic foams with enhanced thermal insulation performance, J. Mater. Sci. Technol., 116(2022), p. 94. doi: 10.1016/j.jmst.2021.10.050
|
[3] |
C. Miao, L.X. Liang, F. Zhang, et al., Review of the fabrication and application of porous materials from silicon-rich industrial solid waste, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 424. doi: 10.1007/s12613-021-2360-9
|
[4] |
B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, and D.S. Smith, Thermal conductivity of highly porous zirconia, J. Eur. Ceram. Soc., 26(2006), No. 16, p. 3567. doi: 10.1016/j.jeurceramsoc.2005.11.011
|
[5] |
Y. Han, C.W. Li, C. Bian, S.B. Li, and C.G. Wang, Porous anorthite ceramics with ultra-low thermal conductivity, J. Eur. Ceram. Soc., 33(2013), No. 13-14, p. 2573. doi: 10.1016/j.jeurceramsoc.2013.04.006
|
[6] |
D.Y. Li and M.S. Li, Porous Y2SiO5 ceramic with low thermal conductivity, J. Mater. Sci. Technol., 28(2012), No. 9, p. 799. doi: 10.1016/S1005-0302(12)60133-9
|
[7] |
Z.L. Tian, L.Y. Zheng, J.M. Wang, P. Wan, J.L. Li, and J.Y. Wang, Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications, J. Eur. Ceram. Soc., 36(2016), No. 1, p. 189. doi: 10.1016/j.jeurceramsoc.2015.09.013
|
[8] |
Y.N. Sun, H.M. Xiang, F.Z. Dai, et al., Preparation and properties of CMAS resistant bixbyite structured high-entropy oxides RE2O3 (RE = Sm, Eu, Er, Lu, Y, and Yb): Promising environmental barrier coating materials for Al2O3f/Al2O3 composites, J. Adv. Ceram., 10(2021), No. 3, p. 596. doi: 10.1007/s40145-021-0461-6
|
[9] |
A.B. Du, C.L. Wan, Z.X. Qu, and W. Pan, Thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu, Gd), J. Am. Ceram. Soc., 92(2009), No. 11, p. 2687. doi: 10.1111/j.1551-2916.2009.03244.x
|
[10] |
J. Feng, B. Xiao, R. Zhou, and W. Pan, Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations, Acta Mater., 61(2013), No. 19, p. 7364. doi: 10.1016/j.actamat.2013.08.043
|
[11] |
Z.F. Zhao, H. Chen, H.M. Xiang, et al., (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: A high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3, J. Mater. Sci. Technol., 35(2019), No. 12, p. 2892. doi: 10.1016/j.jmst.2019.08.012
|
[12] |
P.X. Zhang, E.H. Wang, C.Y. Guo, T. Yang, and X.M. Hou, High-entropy rare earth phosphates (REPO4, RE = Ho, Tm, Yb, Lu, Dy, Er and Y) with excellent comprehensive properties, J. Eur. Ceram. Soc., 44(2024), No. 3, p. 1873. doi: 10.1016/j.jeurceramsoc.2023.10.026
|
[13] |
S. Akrami, P. Edalati, M. Fuji, and K. Edalati, High-entropy ceramics: Review of principles, production and applications, Mater. Sci. Eng. R: Rep., 146(2021), art. No. 100644. doi: 10.1016/j.mser.2021.100644
|
[14] |
P. Sarker, T. Harrington, C. Toher, et al., High-entropy high-hardness metal carbides discovered by entropy descriptors, Nat. Commun., 9(2018), art. No. 4980. doi: 10.1038/s41467-018-07160-7
|
[15] |
P.X. Zhang, X.J. Duan, X.C. Xie, et al., Xenotime-type high-entropy (Dy1/7Ho1/7Er1/7Tm1/7Yb1/7Lu1/7Y1/7)PO4: A promising thermal/environmental barrier coating material for SiCf/SiC ceramic matrix composites, J. Adv. Ceram., 12(2023), No. 5, p. 1033. doi: 10.26599/JAC.2023.9220736
|
[16] |
Z.J. Shao, Z. Wu, L.C. Sun, et al., High entropy ultra-high temperature ceramic thermal insulator (Zr1/5Hf1/5Nb1/5Ta1/5Ti1/5)C with controlled microstructure and outstanding properties, J. Mater. Sci. Technol., 119(2022), p. 190. doi: 10.1016/j.jmst.2021.12.030
|
[17] |
D.B. Liu, Z.L. Zhou, Y.G. Wang, and B.S. Xu, Highly porous (La1/5Nd1/5Sm1/5Gd1/5Yb1/5)2Zr2O7 ceramics with ultra-low thermal conductivity, Ceram. Int., 48(2022), No. 18, p. 26400. doi: 10.1016/j.ceramint.2022.05.330
|
[18] |
D.B. Liu, X.L. Jia, B.L. Shi, Y.G. Wang, and B.S. Xu, (Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)2Si2O7: A novel high-entropy rare earth disilicate porous ceramics with high porosity and low thermal conductivity, Mater. Chem. Phys., 286(2022), art. No. 126181. doi: 10.1016/j.matchemphys.2022.126181
|
[19] |
T.X. Li, S.D. Wang, W.X. Fan, et al., CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy, Acta Mater., 246(2023), art. No. 118728. doi: 10.1016/j.actamat.2023.118728
|
[20] |
T.X. Li, W.N. Jiao, J.W. Miao, et al., A novel ZrNbMoTaW refractory high-entropy alloy with in situ forming heterogeneous structure, Mater. Sci. Eng. A, 827(2021), art. No. 142061. doi: 10.1016/j.msea.2021.142061
|
[21] |
P.X. Zhang, E.H. Wang, X.J. Duan, et al., Preparation and characterization of a novel monazite-type high-entropy (La1/7Ce1/7Pr1/7Nd1/7Sm1/7Eu1/7Gd1/7)PO4 for thermal/environmental barrier coatings, J. Alloys Compd., 952(2023), art. No. 169978. doi: 10.1016/j.jallcom.2023.169978
|
[22] |
W.L. Huo, X.Y. Zhang, Y.G. Chen, et al., Highly porous zirconia ceramic foams with low thermal conductivity from particle-stabilized foams, J. Am. Ceram. Soc., 99(2016), No. 11, p. 3512. doi: 10.1111/jace.14555
|
[23] |
X.Y. Meng, J. Xu, R.W. Yang, et al., Lanthanum zirconate porous ceramics with controllable secondary pores for high-temperature thermal insulation, Ceram. Int., 48(2022), No. 22, p. 33976. doi: 10.1016/j.ceramint.2022.07.347
|
[24] |
X.Y. Meng, J. Xu, J.T. Zhu, et al., Enhancing the thermal insulating properties of lanthanum zirconate porous ceramics via pore structure tailoring, J. Eur. Ceram. Soc., 41(2021), No. 12, p. 6010. doi: 10.1016/j.jeurceramsoc.2021.05.032
|
[25] |
W. Yan, N. Li, and B.Q. Han, Preparation and characterization of porous ceramics prepared by kaolinite gangue and Al(OH)3 with double addition of MgCO3 and CaCO3, Int. J. Miner. Metall. Mater., 18(2011), No. 4, p. 450. doi: 10.1007/s12613-011-0461-6
|
[26] |
J.B. Zhu and H. Yan, Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 309. doi: 10.1007/s12613-017-1409-2
|
[27] |
X. Li, M.Y. Tao, M.B. Pan, et al., The preparation and properties of high-strength porous mullite ceramics by a novel non-toxic gelcasting process, J. Eur. Ceram. Soc., 42(2022), No. 13, p. 6015. doi: 10.1016/j.jeurceramsoc.2022.06.050
|
[28] |
Y. Zhang, Y.J. Wu, X.K. Yang, et al., High-strength thermal insulating mullite nanofibrous porous ceramics, J. Eur. Ceram. Soc., 40(2020), No. 5, p. 2090. doi: 10.1016/j.jeurceramsoc.2020.01.011
|
[29] |
S. Honda, S. Hashimoto, S. Yase, Y. Daiko, and Y. Iwamoto, Fabrication and thermal conductivity of highly porous alumina body from platelets with yeast fungi as a pore forming agent, Ceram. Int., 42(2016), No. 12, p. 13882. doi: 10.1016/j.ceramint.2016.05.196
|
[30] |
S.K.S. Hossain, R. Pyare, and P.K. Roy, Synthesis of in situ mullite foam using waste rice husk ash derived sol by slip-casting route, Ceram. Int., 46(2020), No. 8, p. 10871. doi: 10.1016/j.ceramint.2020.01.099
|
[31] |
J.J. Liu, B. Ren, Y.J. Lu, et al., Novel design of elongated mullite reinforced highly porous alumina ceramics using carbonized rice husk as pore-forming agent, Ceram. Int., 45(2019), No. 11, p. 13964. doi: 10.1016/j.ceramint.2019.04.095
|
[32] |
G.G. Xu, J. Li, H.Z. Cui, Q.K. He, Z.H. Zhang, and X.Y. Zhan, Biotemplated fabrication of porous alumina ceramics with controllable pore size using bioactive yeast as pore-forming agent, Ceram. Int., 41(2015), No. 5, p. 7042. doi: 10.1016/j.ceramint.2015.02.007
|
[33] |
Z. Živcová, E. Gregorová, and W. Pabst, Porous alumina ceramics produced with lycopodium spores as pore-forming agents, J. Mater. Sci., 42(2007), No. 20, p. 8760. doi: 10.1007/s10853-007-1852-y
|
[34] |
Z.F. Zhao, H.M. Xiang, F.Z. Dai, Z.J. Peng, and Y.C. Zhou, On the potential of porous ZrP2O7 ceramics for thermal insulating and wave-transmitting applications at high temperatures, J. Eur. Ceram. Soc., 40(2020), No. 3, p. 789. doi: 10.1016/j.jeurceramsoc.2019.11.016
|
[35] |
M. Fukushima and Y.I. Yoshizawa, Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route, J. Eur. Ceram. Soc., 36(2016), No. 12, p. 2947. doi: 10.1016/j.jeurceramsoc.2015.09.041
|
[36] |
C. Voigt, T. Zienert, P. Schubert, C.G. Aneziris, and J.Hubálková, Reticulated porous foam ceramics with different surface chemistries, J. Am. Ceram. Soc., 97(2014), No. 7, p. 2046. doi: 10.1111/jace.12977
|
[37] |
X.Y. Meng, J. Xu, J.T. Zhu, et al., Pyrochlore–fluorite dual-phase high-entropy ceramic foams with extremely low thermal conductivity from particle-stabilized suspension, Scripta Mater., 194(2021), art. No. 113714. doi: 10.1016/j.scriptamat.2020.113714
|
[38] |
K. Mohanta, A. Kumar, O. Parkash, and D. Kumar, Low cost porous alumina with tailored microstructure and thermal conductivity prepared using rice husk and sucrose, J. Am. Ceram. Soc., 97(2014), No. 6, p. 1708. doi: 10.1111/jace.12946
|
[39] |
R.M. Novais, M.P. Seabra, and J.A. Labrincha, Ceramic tiles with controlled porosity and low thermal conductivity by using pore-forming agents, Ceram. Int., 40(2014), No. 8, p. 11637. doi: 10.1016/j.ceramint.2014.03.163
|
[40] |
J.J. Liu, Y.B. Li, Y.W. Li, S.B. Sang, and S.J. Li, Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent, Ceram. Int., 42(2016), No. 7, p. 8221. doi: 10.1016/j.ceramint.2016.02.032
|
[41] |
H. Chen, H.M. Xiang, F.Z. Dai, et al., High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C, J. Mater. Sci. Technol., 35(2019), No. 8, p. 1700. doi: 10.1016/j.jmst.2019.04.006
|
[42] |
X.Y. Meng, J. Xu, J.T. Zhu, et al., Porous yttria-stabilized zirconia ceramics with low thermal conductivity via a novel foam-gelcasting method, J. Mater. Sci., 55(2020), No. 31, p. 15106. doi: 10.1007/s10853-020-04900-3
|
[43] |
L.L. Gong, Y.H. Wang, X.D. Cheng, R.F. Zhang, and H.P. Zhang, Thermal conductivity of highly porous mullite materials, Int. J. Heat Mass Transf., 67(2013), p. 253. doi: 10.1016/j.ijheatmasstransfer.2013.08.008
|
[44] |
Z.G. Hou, J.C. Liu, H.Y. Du, H. Xu, A.R. Guo, and M. Wang, Preparation of porous Y2SiO5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method, Ceram. Int., 39(2013), No. 2, p. 969. doi: 10.1016/j.ceramint.2012.07.014
|
[45] |
R.B. Zhang, D.N. Fang, X.M. Chen, Y.M. Pei, Z.D. Wang, and Y.S. Wang, Microstructure and properties of highly porous Y2SiO5 ceramics produced by a new water-based freeze casting, Mater. Des., 46(2013), p. 746. doi: 10.1016/j.matdes.2012.11.020
|
[46] |
Z. Wu, L.C. Sun, J.J. Pan, and J.Y. Wang, Fiber reinforced highly porous γ-Y2Si2O7 ceramic fabricated by foam-gelcasting-freeze drying method, Scripta Mater., 146(2018), p. 331. doi: 10.1016/j.scriptamat.2017.12.017
|
[47] |
Z. Wu, L.C. Sun, P. Wan, J.N. Li, Z.J. Hu, and J.Y. Wang, In situ foam-gelcasting fabrication and properties of highly porous γ-Y2Si2O7 ceramic with multiple pore structures, Scripta Mater., 103(2015), p. 6. doi: 10.1016/j.scriptamat.2015.02.024
|
[48] |
X.Y. Meng, J. Xu, J.T. Zhu, et al., Hierarchically porous lanthanum zirconate foams with low thermal conductivity from particle-stabilized foams, J. Am. Ceram. Soc., 103(2020), No. 11, p. 6088. doi: 10.1111/jace.17341
|
[49] |
W.Y. Zhou, Z. Zhang, N. Li, W. Yan, and G.T. Ye, A new mullite foamed ceramic prepared by direct-foaming methods in parallel with a mechanical activation technique, Ceram. Int., 48(2022), No. 14, p. 20721. doi: 10.1016/j.ceramint.2022.04.053
|
[50] |
L.L. Gong, Y.H. Wang, X.D. Cheng, R.F. Zhang, and H.P. Zhang, A novel effective medium theory for modelling the thermal conductivity of porous materials, Int. J. Heat Mass Transf., 68(2014), p. 295. doi: 10.1016/j.ijheatmasstransfer.2013.09.043
|