留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 8
Aug.  2024

图(10)  / 表(6)

数据统计

分享

计量
  • 文章访问数:  974
  • HTML全文浏览量:  161
  • PDF下载量:  13
  • 被引次数: 0
Chengzhi Xu, Hongyu Yang, Hongcheng Yang, Linzhuang Xing, Yuan Wang, Zhimin Li, Enzhu Li, and Guorui Zhao, Low-firing and temperature stability regulation of tri-rutile MgTa2O6 microwave dielectric ceramics, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1935-1943. https://doi.org/10.1007/s12613-023-2791-6
Cite this article as:
Chengzhi Xu, Hongyu Yang, Hongcheng Yang, Linzhuang Xing, Yuan Wang, Zhimin Li, Enzhu Li, and Guorui Zhao, Low-firing and temperature stability regulation of tri-rutile MgTa2O6 microwave dielectric ceramics, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1935-1943. https://doi.org/10.1007/s12613-023-2791-6
引用本文 PDF XML SpringerLink
研究论文

三倍金红石型MgTa2O6微波介质陶瓷的低温烧结及温度稳定性调控


  • 通讯作者:

    杨鸿宇    E-mail: yanghongyu@xidian.edu.cn

    李智敏    E-mail: zmli@mail.xidian.edu.cn

文章亮点

  • (1) 系统地研究了Li2O–MgO–ZnO–B2O3–SiO2玻璃对MgTa2O6陶瓷的低温烧结行为、晶体结构畸变与微波介电性能的影响规律
  • (2) 协同解决了MgTa2O6微波介质陶瓷较高烧结温度与较差温度稳定性的问题
  • (3) 制备出具有优异微波介电性能的MgTa2O6基微波介质陶瓷:εr = 26.1, Q×f = 34267 GHz, τf = –8.7 × 10–6 /°C
  • 三倍金红石型MgTa2O6微波介质陶瓷常被用于制作介质滤波器与介质谐振器等电子元器件,是5G基站通信领域中的一种重要材料类型。然而,该材料的烧结温度较高且温度稳定型较差,限制了其在高频通信中的进一步应用。为了协同解决MgTa2O6微波介质陶瓷较高的烧结温度与较差的温度稳定性的问题,本文采用了一种含有Li2O–MgO–ZnO–B2O3–SiO2组分的玻璃,利用传统固相烧结工艺研究了玻璃掺杂对MgTa2O6陶瓷的低温烧结行为、晶体结构畸变与微波介电性能的影响。研究表明,掺杂2wt%的玻璃不会引入杂质相,体系仍为单一的三倍金红石型MgTa2O6物相,说明玻璃掺杂形成了MgTa2O6固溶体。当添加2wt%玻璃,在1150°C时可以获得致密性优异且微波介电性能良好的材料体系:εr = 26.1, Q×f = 34267 GHz, τf = –8.7 × 10–6 /°C。研究表明,Li2O–MgO–ZnO–B2O3–SiO2玻璃不仅极大地改善了MgTa2O6陶瓷的低温烧结特性,而且在保持高Q×f值的同时仍有效提高了温度稳定性,这进一步发掘了该材料在高频通信中的应用潜力。
  • Research Article

    Low-firing and temperature stability regulation of tri-rutile MgTa2O6 microwave dielectric ceramics

    + Author Affiliations
    • A glass frit containing Li2O–MgO–ZnO–B2O3–SiO2 component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa2O6 ceramics in this study. The good low-firing effects are presented due to the high matching relevance between Li2O–MgO–ZnO–B2O3–SiO2 glass and MgTa2O6 ceramics. The pure tri-rutile MgTa2O6 structure remains unchanged, and high sintering compactness can also be achieved at 1150°C. We found that the Li2O–MgO–ZnO–B2O3–SiO2 glass not only greatly improves the low-temperature sintering characteristics of MgTa2O6 ceramics but also maintains a high (quality factor (Q) × resonance frequency (f)) value while still improving the temperature stability. Typically, great microwave dielectric characteristics when added with 2wt% Li2O–MgO–ZnO–B2O3–SiO2 glass can be achieved at 1150°C: dielectric constant, εr = 26.1; Q × f = 34267 GHz; temperature coefficient of resonance frequency, τf = −8.7 × 10−6 /°C.
    • loading
    • [1]
      F.F. Wu, D. Zhou, C. Du, et al., Temperature stable Sm(Nb1– xV x)O4 (0.0 ≤ x ≤ 0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications, J. Mater. Chem. C, 9(2021), No. 31, p. 9962. doi: 10.1039/D1TC02390J
      [2]
      H.C. Xiang, J. Kilpijärvi, S. Myllymäki, H.T. Yang, L. Fang, and H. Jantunen, Spinel-olivine microwave dielectric ceramics with low sintering temperature and high quality factor for 5GHz Wi-Fi antennas, Appl. Mater. Today, 21(2020), art. No. 100826. doi: 10.1016/j.apmt.2020.100826
      [3]
      M.T. Sebastian and H. Jantunen, Low loss dielectric materials for LTCC applications: A review, Int. Mater. Rev., 53(2008), No. 2, p. 57. doi: 10.1179/174328008X277524
      [4]
      F.F. Wu, D. Zhou, C. Du, et al., Design of a sub-6 GHz dielectric resonator antenna with novel temperature-stabilized (Sm1– xBi x)NbO4 (x = 0–0.15) microwave dielectric ceramics, ACS Appl. Mater. Interfaces, 14(2022), No. 5, p. 7030. doi: 10.1021/acsami.1c24307
      [5]
      H. Yang, S. Zhang, H. Yang, et al., The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams, J. Adv. Ceram., 10(2021), No. 5, p. 885. doi: 10.1007/s40145-021-0528-4
      [6]
      H.J. Lee, K.S. Hong, and I.T. Kim, Crystal structure and microwave dielectric properties of M(Nb xTa1− x)2O6 solid solution (M = Mg or Zn), J. Mater. Res., 12(1997), No. 6, p. 1437. doi: 10.1557/JMR.1997.0196
      [7]
      E.S. Kim and C.J. Jeon, Dependence of microwave dielectric properties on structural characteristics of ilmenite, tri-rutile and wolframite ceramics, J. Adv. Dielectr., 1(2011), No. 1, p. 127. doi: 10.1142/S2010135X11000161
      [8]
      H.T. Wu, Y.S. Jiang, and Y.L. Yue, Low-temperature synthesis and microwave dielectric properties of trirutile-structure MgTa2O6 ceramics by aqueous sol–gel process, Ceram. Int., 38(2012), No. 6, p. 5151. doi: 10.1016/j.ceramint.2012.03.020
      [9]
      B.J. Fu, Y.C. Zhang, X.L. Su, Y.H. Liu, and M. Hong, Effects of CuO addition on the microstructure and microwave dielectric properties of MgTa2O6 ceramics, Key Eng. Mater., 512-515(2012), p. 1222. doi: 10.4028/www.scientific.net/KEM.512-515.1222
      [10]
      H.Y. Yang, L. Chai, G.C. Liang, et al., Structure, far-infrared spectroscopy, microwave dielectric properties, and improved low-temperature sintering characteristics of tri-rutile Mg0.5Ti0.5TaO4 ceramics, J. Adv. Ceram., 12(2023), No. 2, p. 296. doi: 10.26599/JAC.2023.9220683
      [11]
      H.Y. Yang, L. Chai, Y.C. Wang, M.J. Xing, Y.W. Chen, and E.Z. Li, Matching correlation study of titanium-based ceramics with glass based on dissolution characteristics, J. Eur. Ceram. Soc., 42(2022), No. 13, p. 5778. doi: 10.1016/j.jeurceramsoc.2022.06.014
      [12]
      M. Valant, D. Suvorov, R.C. Pullar, K. Sarma, and N.M. Alford, A mechanism for low-temperature sintering, J. Eur. Ceram. Soc., 26(2006), No. 13, p. 2777. doi: 10.1016/j.jeurceramsoc.2005.06.026
      [13]
      B.H. Toby, EXPGUI, a graphical user interface for GSAS , J. Appl. Crystallogr., 34(2001), No. 2, p. 210.
      [14]
      A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS ), Los Alamos National Laboratory Report LAUR 86-748, U.S. Department of Energy: Washington, DC, 2004.
      [15]
      T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang, and R.E. Newnham, Effect of glass additions on BaO–TiO2–WO3 microwave ceramics, ChemInform, 25(1994), No. 7, p. 1909.
      [16]
      H.Y. Yang, S.R. Zhang, H.C. Yang, X. Zhang, and E.Z. Li, Structural evolution and microwave dielectric properties of xZn0.5Ti0.5NbO4–(1– x)Zn0.15Nb0.3Ti0.55O2 ceramics, Inorg. Chem., 57(2018), No. 14, p. 8264. doi: 10.1021/acs.inorgchem.8b00873
      [17]
      E.A. Nenasheva, S.S. Redozubov, N.F. Kartenko, and I.M. Gaidamaka, Microwave dielectric properties and structure of ZnO–Nb2O5–TiO2 ceramics, J. Eur. Ceram. Soc., 31(2011), No. 6, p. 1097. doi: 10.1016/j.jeurceramsoc.2010.12.023
      [18]
      X.C. Fan, X.M. Chen, and X.Q. Liu, Structural dependence of microwave dielectric properties of SrRAlO4 (R = Sm, Nd, La) ceramics: Crystal structure refinement and infrared reflectivity study, Chem. Mater., 20(2008), No. 12, p. 4092. doi: 10.1021/cm703273z
      [19]
      R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A, 32(1976), No. 5, p. 751. doi: 10.1107/S0567739476001551
      [20]
      Z.Q. Yuan, B. Liu, X.Q. Liu, and X.M. Chen, Structure and microwave dielectric characteristics of Sr(La1− xSm x)2Al2O7 ceramics, RSC Adv., 6(2016), No. 98, p. 96229. doi: 10.1039/C6RA20776F
      [21]
      E.S. Kim, C.J. Jeon, and P.G. Clem, Effects of crystal structure on the microwave dielectric properties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) ceramics, J. Am. Ceram. Soc., 95(2012), No. 9, p. 2934. doi: 10.1111/j.1551-2916.2012.05274.x
      [22]
      N.E. Brese and M. O'Keeffe, Bond-valence parameters for solids, Acta Crystallogr., Sect. B, 47(1991), No. 2, p. 192. doi: 10.1107/S0108768190011041
      [23]
      H.R. Tian, J.J. Zheng, L.T. Liu, et al., Structure characteristics and microwave dielectric properties of Pr2(Zr1– xTi x)3(MoO4)9 solid solution ceramic with a stable temperature coefficient, J. Mater. Sci. Technol., 116(2022), p. 121. doi: 10.1016/j.jmst.2021.10.051
      [24]
      H.Y. Yang, E.Z. Li, H.C. Yang, H.C. He, and R.S. Zhang, Synthesis of Zn0.5Ti0.5NbO4 microwave dielectric ceramics with Li2O–B2O3–SiO2 glass for LTCC application, Int. J. Appl. Glass Sci., 9(2018), No. 3, p. 392. doi: 10.1111/ijag.12334
      [25]
      L.S. Xie, C.W. Zhong, Z.X. Fang, Y. Zhao, B. Tang, and S.R. Zhang, Microwave dielectric properties of Li2O–xMgO–ZnO–B2O3–SiO2 glass-ceramics (x = 30–50 wt.%), J. Ceram. Soc. Jpn, 126(2018), No. 3, p. 163. doi: 10.2109/jcersj2.17156
      [26]
      C.F. Tseng, Microwave dielectric properties of low loss microwave dielectric ceramics: A0.5Ti0.5NbO4 (A = Zn, Co), J. Eur. Ceram. Soc., 34(2014), No. 15, p. 3641. doi: 10.1016/j.jeurceramsoc.2014.06.010
      [27]
      H.Y. Yang, E.Z. Li, Y.F. Yang, Y. Shi, H.C. He, and S.R. Zhang, Co2O3 substitution effects on the structure and microwave dielectric properties of low-firing (Zn0.9Mg0.1)TiO3 ceramics, Ceram. Int., 44(2018), No. 5, p. 5010. doi: 10.1016/j.ceramint.2017.12.097
      [28]
      R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys., 73(1993), No. 1, p. 348. doi: 10.1063/1.353856
      [29]
      D. Zhou, X.Q. Fan, X.W. Jin, D.W. He, and G.H. Chen, Structures, phase transformations, and dielectric properties of BiTaO4 ceramics, Inorg. Chem., 55(2016), No. 22, p. 11979. doi: 10.1021/acs.inorgchem.6b02153
      [30]
      H.Y. Yang, S.R. Zhang, H.C. Yang, Y. Yuan, and E.Z. Li, Intrinsic dielectric properties of columbite ZnNb2O6 ceramics studied by P–V–L bond theory and Infrared spectroscopy, J. Am. Ceram. Soc., 102(2019), No. 9, p. 5365. doi: 10.1111/jace.16385
      [31]
      E.S. Kim, B.S. Chun, R. Freer, and R.J. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics, J. Eur. Ceram. Soc., 30(2010), No. 7, p. 1731. doi: 10.1016/j.jeurceramsoc.2009.12.018
      [32]
      J. Bao, Y.P. Zhang, H. Kimura, H.T. Wu, and Z.X. Yue, Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1– xTi x )3(MoO4)9 ceramics, J. Adv. Ceram., 12(2023), No. 1, p. 82. doi: 10.26599/JAC.2023.9220668
      [33]
      H. Tian, X. Zhou, T. Jiang, et al., Bond characteristics and microwave dielectric characteristics of (Mn1/3Sb2/3)4+ doped molybdate based low-temperature sintering ceramics, J. Alloys Compd., 906(2022), art. No. 164333. doi: 10.1016/j.jallcom.2022.164333
      [34]
      Z.X. Fang, B. Tang, F. Si, and S.R. Zhang, Low temperature sintering of high permittivity Ca–Li–Nd–Ti microwave dielectric ceramics with BaCu(B2O5) additives, J. Alloys Compd., 693(2017), p. 843. doi: 10.1016/j.jallcom.2016.09.292
      [35]
      A.J. Bosman and E.E. Havinga, Temperature dependence of dielectric constants of cubic ionic compounds, Phys. Rev., 129(1963), No. 4, p. 1593. doi: 10.1103/PhysRev.129.1593
      [36]
      M.Z. Dang, H.X. Lin, X.G. Yao, et al., Effects of B2O3 and MgO on the microwave dielectric properties of MgTa2O6 ceramics, Ceram. Int., 45(2019), No. 18, p. 24244. doi: 10.1016/j.ceramint.2019.08.135
      [37]
      C.L. Huang, K.H. Chiang, and C.Y. Huang, Microwave dielectric properties and microstructures of MgTa2O6 ceramics with CuO addition, Mater. Chem. Phys., 90(2005), No. 2-3, p. 373. doi: 10.1016/j.matchemphys.2004.10.037

    Catalog


    • /

      返回文章
      返回