留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 8
Aug.  2024

图(13)

数据统计

分享

计量
  • 文章访问数:  1098
  • HTML全文浏览量:  106
  • PDF下载量:  16
  • 被引次数: 0
Wenxiong Chen and Honglong Xing, Construction of enhanced multi-polarization and high performance electromagnetic wave absorption by self-growing ZnFe2O4 on Cu9S5, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1922-1934. https://doi.org/10.1007/s12613-023-2795-2
Cite this article as:
Wenxiong Chen and Honglong Xing, Construction of enhanced multi-polarization and high performance electromagnetic wave absorption by self-growing ZnFe2O4 on Cu9S5, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1922-1934. https://doi.org/10.1007/s12613-023-2795-2
引用本文 PDF XML SpringerLink
研究论文

Cu9S5表面自生长ZnFe2O4构建多极化和高性能电磁波吸收的三维花状复合材料



  • 通讯作者:

    邢宏龙    E-mail: austxhl@163.com

文章亮点

  • (1) 采用简单的水热法制备了不同磁化程度的三维花状结构Cu9S5/ZnFe2O4复合材料
  • (2) 由于存在多种损耗路径、晶格缺陷和多极化效应的存在,材料的电磁吸收性能得到了提高
  • (3) 复合材料具有高性能电磁波吸收性能,可有效实现雷达隐身效果。
  • 具有电磁波吸收性能的三维结构复合材料的开发是有效衰减电磁波的策略。在此,通过多步水热法设计并制备了磁化花状Cu9S5/ZnFe2O4复合材料。对复合材料的晶体结构、表面化学信息、形貌结构、磁性和电磁参数进行了分析。所制备的Cu9S5/ZnFe2O4复合材料具有多重电磁波损耗路径,呈现出整体三维花状结构。Cu9S5/ZnFe2O4复合材料的最小反射损耗值为–54.38 dB,且具有5.92 GHz的宽有效吸收带宽。通过对材料的磁化修饰,ZnFe2O4颗粒在Cu9S5表面自组装生长。这种修饰有利于产生更多的交联接触点,有效引入大量的相界面、晶体缺陷和特殊的三维花状结构,有效引入磁电耦合损耗效应。此外,多种损耗策略的协同作用有效提高了材料的电磁波吸收性能。该工作为磁化修饰硫化物复合功能材料在电磁波吸收领域的应用提供了一种策略。
  • Research Article

    Construction of enhanced multi-polarization and high performance electromagnetic wave absorption by self-growing ZnFe2O4 on Cu9S5

    + Author Affiliations
    • The development of 3D structural composites with electromagnetic (EM) wave absorption could attenuate EM waves. Herein, magnetized flower-like Cu9S5/ZnFe2O4 composites were fabricated through a multistep hydrothermal method. The crystallographic and surface phase chemical information, morphological structure, and magnetic and EM parameters of the composites were analyzed. The prepared Cu9S5/ZnFe2O4 composites have multiple loss paths for EM waves and present an overall 3D flower-like structure. The Cu9S5/ZnFe2O4 composites exhibit a minimum reflection loss of −54.38 dB and a broad effective absorption bandwidth of 5.92 GHz. Through magnetization, ZnFe2O4 particles are self-assembled and grown on the surfaces of Cu9S5. Such a modification is conducive to the generation of additional cross-linking contact sites and the effective introduction of a large number of phase interfaces, crystalline defects, special three-dimensional flower-like structures, and magneto–electrical coupling loss effects. Moreover, the synergistic effect of multiple loss strategies effectively improves EM wave absorption by the material. This work can provide a strategy for the use of magnetization-modified sulfide composite functional materials in EM wave absorption.
    • loading
    • Supplementary Information-s12613-023-2795-2.docx
    • [1]
      X. Yang, Y.P. Duan, S.Q. Li, et al., Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance, Carbon, 188(2022), p. 376. doi: 10.1016/j.carbon.2021.12.044
      [2]
      L. Wang, M.Q. Huang, X.F. Yu, et al., Engineering polarization surface of hierarchical ZnO microspheres via spray-annealing strategy for wide-frequency electromagnetic wave absorption, J. Mater. Sci. Technol., 131(2022), p. 231. doi: 10.1016/j.jmst.2022.05.015
      [3]
      J. Cheng, C. Li, Y. Xiong, et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials, Nano-Micro Lett., 14(2022), No. 1, art. No. 80. doi: 10.1007/s40820-022-00823-7
      [4]
      H.D. Sun, Y. Zhang, Y. Wu, et al., Broadband absorption of macro pyramid structure based flame retardant absorbers, J. Mater. Sci. Technol., 128(2022), p. 228. doi: 10.1016/j.jmst.2022.04.030
      [5]
      J.Y. Liu, Y.P. Duan, T. Zhang, L.X. Huang, and H.F. Pang, Dual-polarized and real-time reconfigurable metasurface absorber with infrared-coded remote-control system, Nano Res., 15(2022), No. 8, p. 7498. doi: 10.1007/s12274-022-4528-7
      [6]
      L. Wang, M.Q. Huang, X. Qian, et al., Confined magnetic-dielectric balance boosted electromagnetic wave absorption, Small, 17(2021), No. 30, art. No. e2100970. doi: 10.1002/smll.202100970
      [7]
      M. Zhang, M.S. Cao, Q.Q. Wang, et al., A multifunctional stealthy material for wireless sensing and active camouflage driven by configurable polarization, J. Mater. Sci. Technol., 132(2023), p. 42. doi: 10.1016/j.jmst.2022.05.046
      [8]
      Y. Zheng, C.Y. Li, L.H. Qi, et al., Reduced graphene oxide-supported boron and nitrogen co-doped carbon nanotubes with embedded cobalt nanoparticles for absorption of electromagnetic wave, J. Alloys Compd., 865(2021), art. No. 158967. doi: 10.1016/j.jallcom.2021.158967
      [9]
      A.K. Darboe, X. Qi, X. Gong, et al., Constructing MoSe2/MoS2 and MoS2/MoSe2 inner and outer-interchangeable flower-like heterojunctions: A combined strategy of interface polarization and morphology configuration to optimize microwave absorption performance, J. Colloid Interface Sci., 624(2022), p. 204. doi: 10.1016/j.jcis.2022.05.078
      [10]
      B. Shi, H.S. Liang, Z.J. Xie, Q. Chang, and H.J. Wu, Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1388. doi: 10.1007/s12613-023-2599-4
      [11]
      L. Wang, Y.T. Qian, J.M. Du, et al., Facile synthesis of cactus-shaped CdS–Cu9S5 heterostructure on copper foam with enhanced photoelectrochemical performance, Appl. Surf. Sci., 492(2019), p. 849. doi: 10.1016/j.apsusc.2019.06.264
      [12]
      L. Chen, Y.B. Li, B. Zhao, et al., Multiprincipal element M2FeC (M = Ti, V, Nb, Ta, Zr) MAX phases with synergistic effect of dielectric and magnetic loss, Adv. Sci., 10(2023), No. 10, art. No. 2206877. doi: 10.1002/advs.202206877
      [13]
      Y.P. Duan, H.F. Pang, and H. Zhang, Structure and composition design on ternary CNT@ZnFe2O4@ZnO composite utilized as enhanced microwave absorbing materials, Diam. Relat. Mater., 120(2021), art. No. 108701. doi: 10.1016/j.diamond.2021.108701
      [14]
      G.L. Wu, H.J. Wu, and Z.R. Jia, Editorial for special issue on electromagnetic wave absorbing materials, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 401. doi: 10.1007/s12613-022-2578-1
      [15]
      F. Tao, M. Green, A.T.V. Tran, Y. Zhang, Y. Yin, and X. Chen, Plasmonic Cu9S5 nanonets for microwave absorption, ACS Appl. Nano Mater., 2(2019), No. 6, p. 3836. doi: 10.1021/acsanm.9b00700
      [16]
      J. Liao, M.Q. Ye, A.J. Han, J.M. Guo, Q.Z. Liu, and G.Q. Yu, Boosted electromagnetic wave absorption performance from multiple loss mechanisms in flower-like Cu9S5/RGO composites, Carbon, 177(2021), p. 115. doi: 10.1016/j.carbon.2021.02.060
      [17]
      J.T. Zhou, B. Wei, M.Q. Wang, et al., Three dimensional flower like ZnFe2O4 ferrite loaded graphene: Enhancing microwave absorption performance by constructing microcircuits, J. Alloys Compd., 889(2021), art. No. 161734. doi: 10.1016/j.jallcom.2021.161734
      [18]
      G.M. Li, X.J. Xue, L.T. Mao, et al., Recycling and utilization of coal gasification residues for fabricating Fe/C composites as novel microwave absorbents, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 591. doi: 10.1007/s12613-022-2534-0
      [19]
      C.Y. Xu, P.B. Liu, Z.C. Wu, et al., Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption, Adv. Sci., 9(2022), No. 17, art. No. 2200804. doi: 10.1002/advs.202200804
      [20]
      R. Cai, W. Zheng, P.A. Yang, et al., Microstructure, electromagnetic properties, and microwave absorption mechanism of SiO2–MnO–Al2O3 based manganese ore powder for electromagnetic protection, Molecules, 27(2022), No. 12, art. No. 3758. doi: 10.3390/molecules27123758
      [21]
      J.R. Di, Y.P. Duan, H.F. Pang, X.R. Ma, and J. Liu, Sintering-regulated two-dimensional plate@shell basalt@NiO heterostructure for enhanced microwave absorption, Appl. Surf. Sci., 574(2022), art. No. 151590. doi: 10.1016/j.apsusc.2021.151590
      [22]
      M.Q. Huang, L. Wang, W.B. You, and R.C. Che, Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber, Small, 17(2021), No. 30, art. No. e2101416. doi: 10.1002/smll.202101416
      [23]
      Z. Zhang, J.Y. Sun, S.D. Mo, et al., Constructing a highly efficient CuS/Cu9S5 heterojunction with boosted interfacial charge transfer for near-infrared photocatalytic disinfection, Chem. Eng. J., 431(2022), art. No. 134287. doi: 10.1016/j.cej.2021.134287
      [24]
      D.M. Xu, Y.F. Yang, K. Le, et al., Bifunctional Cu9S5/C octahedral composites for electromagnetic wave absorption and supercapacitor applications, Chem. Eng. J., 417(2021), art. No. 129350. doi: 10.1016/j.cej.2021.129350
      [25]
      J. Liao, M.Q. Ye, A.J. Han, J.M. Guo, and C.L. Chen, Nanosheet architecture of Cu9S5 loaded with Fe3O4 microspheres for efficient electromagnetic wave absorption, Ceram. Int., 47(2021), No. 7, p. 8803. doi: 10.1016/j.ceramint.2020.11.246
      [26]
      G.L. Wu, H.X. Zhang, X.X. Luo, L.J. Yang, and H.L. Lv, Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber, J. Colloid Interface Sci., 536(2019), p. 548. doi: 10.1016/j.jcis.2018.10.084
      [27]
      R.W. Shu, J. Xu, Z.L. Wan, and X. Cao, Synthesis of hierarchical porous nitrogen-doped reduced graphene oxide/zinc ferrite composite foams as ultrathin and broadband microwave absorbers, J. Colloid Interface Sci., 608(2022), p. 2994. doi: 10.1016/j.jcis.2021.11.030
      [28]
      L.H. Bai, H.L. Xing, and X.L. Ji, Zinc aluminate nanoparticles modified with (D-xylose, adenine)-derived nitrogen-doped carbon nanosheet composites as high-efficiency microwave absorbents, Diam. Relat. Mater., 127(2022), art. No. 109150. doi: 10.1016/j.diamond.2022.109150
      [29]
      Z.R. Jia, M.Y. Kong, B.W. Yu, Y.Z. Ma, J.Y. Pan, and G.L. Wu, Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties, J. Mater. Sci. Technol., 127(2022), p. 153. doi: 10.1016/j.jmst.2022.04.005
      [30]
      H.X. Jia, H.L. Xing, X.L. Ji, and S.T. Gao, Self-template and in situ polymerization strategy to lightweight hollow MnO2@polyaniline core–shell heterojunction with excellent microwave absorption properties, Appl. Surf. Sci., 537(2021), art. No. 147857. doi: 10.1016/j.apsusc.2020.147857
      [31]
      H. Liu, H.L. Xing, R. Shi, and X.L. Ji, Facial synthesis of Al@MnO2 with enhanced microwave absorption and low infrared emissivity, J. Mater. Sci.: Mater. Electron., 31(2020), p. 18791. doi: 10.1007/s10854-020-04419-y
      [32]
      H.M. Hao, L.M. Wang, L.H. Xu, H. Pan, L.Q. Cao, and K.Q. Chen, Synthesis of hollow core–shell ZnFe2O4@C nanospheres with excellent microwave absorption properties, RSC Adv, 12(2022), No. 17, p. 10573. doi: 10.1039/D2RA01022D
      [33]
      L.H. Bai, H.L. Xing, X.L. Ji, and P. Yang, D-xylose-derived carbon microspheres modified by CuFe2O4 nanoparticles with excellent microwave absorption properties, J. Mater. Sci. Mater. Electron., 32(2021), No. 22, p. 26726. doi: 10.1007/s10854-021-07050-7
      [34]
      L.L. Deng, J.B. Zhang, and R.W. Shu, Fabrication of three-dimensional nitrogen-doped reduced graphene oxide/tin oxide composite aerogels as high-performance electromagnetic wave absorbers, J. Colloid Interface Sci., 602(2021), p. 282. doi: 10.1016/j.jcis.2021.06.029
      [35]
      X.C. Di, Y. Wang, Y.Q. Fu, X.M. Wu, and P. Wang, Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber, Carbon, 173(2021), p. 174. doi: 10.1016/j.carbon.2020.11.006
      [36]
      D.M. Xu, Y.F. Yang, L.F. Lyu, et al., One-dimensional MnO@N-doped carbon nanotubes as robust dielectric loss electromagnetic wave absorbers, Chem. Eng. J., 410(2021), art. No. 128295. doi: 10.1016/j.cej.2020.128295
      [37]
      X.C. Zhang, M.J. Liu, J. Xu, et al., Flexible and waterproof nitrogen-doped carbon nanotube arrays on cotton-derived carbon fiber for electromagnetic wave absorption and electric-thermal conversion, Chem. Eng. J., 433(2022), art. No. 133794. doi: 10.1016/j.cej.2021.133794
      [38]
      S.T. Gao, Y.C. Zhang, H.L. Xing, and H.X. Li, Controlled reduction synthesis of yolk–shell magnetic@void@C for electromagnetic wave absorption, Chem. Eng. J., 387(2020), art. No. 124149. doi: 10.1016/j.cej.2020.124149
      [39]
      L. Chang, Y.Z. Wang, X.C. Zhang, L. Li, H.Z. Zhai, and M.S. Cao, Toward high performance microwave absorber by implanting La0.8CoO3 nanoparticles on rGO, J. Mater. Sci. Technol., 174(2024), p. 176. doi: 10.1016/j.jmst.2023.06.062
      [40]
      B. Huang, J.L. Yue, B.H. Fan, Y. Liu, and X.Z. Huang, Vertical carbon nanotubes arrays with controlled morphology on silicon carbide fibers for electromagnetic wave absorption, Ceram. Int., 48(2022), No. 13, p. 19375. doi: 10.1016/j.ceramint.2022.03.232
      [41]
      C.C. Gong, J.J. Jiang, J.W. Ding, et al., Graphene oxide supported yolk–shell ZnS/Ni3S4 with the adjustable air layer for high performance of electromagnetic wave absorber, J. Colloid Interface Sci., 617(2022), p. 620. doi: 10.1016/j.jcis.2022.03.005
      [42]
      H.L. Xing, J.X. Xie, and M.Q. Hu, Sheet-like NiCo2O4-interconnected multiwalled carbon nanotubes with high-performance electromagnetic wave absorption, J. Mater. Sci. - Mater. Electron., 33(2022), No. 1, p. 306. doi: 10.1007/s10854-021-07294-3
      [43]
      J.L. Wang, M. Zhou, Z.C. Xie, et al., Enhanced interfacial polarization of biomass-derived porous carbon with a low radar cross-section, J. Colloid Interface Sci., 612(2022), p. 146. doi: 10.1016/j.jcis.2021.12.162
      [44]
      R. Zhou, Y.S. Wang, Z.Y. Liu, Y.Q. Pang, J.X. Chen, and J. Kong, Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption, Nano-Micro Lett., 14(2022), No. 1, art. No. 122. doi: 10.1007/s40820-022-00865-x
      [45]
      J. Zhao, Y. Wei, Y. Zhang, and Q.G. Zhang, 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption, J. Mater. Sci. Technol., 126(2022), p. 141. doi: 10.1016/j.jmst.2022.03.016
      [46]
      S.P. Wang, Z.Y. Liu, Q.C. Liu, et al., Promoting the microwave absorption performance of hierarchical CF@NiO/Ni composites via phase and morphology evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 494.
      [47]
      X. Yang, Y.P. Duan, S.Q. Li, et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring, Nano-Micro Lett., 14(2021), No. 1, art. No. 28.
      [48]
      J.B. Cheng, H.B. Zhao, A.N. Zhang, Y.Q. Wang, and Y.Z. Wang, Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption, J. Mater. Sci. Technol., 126(2022), p. 266. doi: 10.1016/j.jmst.2022.02.051
      [49]
      T. Zhu, W. Shen, X.Y. Wang, Y.F. Song, and W. Wang, Paramagnetic CoS2@MoS2 core–shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers, Chem. Eng. J., 378(2019), art. No. 122159. doi: 10.1016/j.cej.2019.122159
      [50]
      X.J. Liu, Y.P. Duan, Y. Guo, et al., Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption, Nano-Micro Lett., 14(2022), No. 1, art. No. 142. doi: 10.1007/s40820-022-00886-6
      [51]
      L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
      [52]
      Z.G. Gao, K. Yang, Z.H. Zhao, et al., Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 405. doi: 10.1007/s12613-022-2555-8
      [53]
      L.M. Song, C.W. Wu, Q. Zhi, et al., Multifunctional SiC aerogel reinforced with nanofibers and nanowires for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 467(2023), art. No. 143518. doi: 10.1016/j.cej.2023.143518
      [54]
      Q.Q. Huang, Y. Zhao, Y. Wu, et al., A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility, Chem. Eng. J., 446(2022), art. No. 137279. doi: 10.1016/j.cej.2022.137279
      [55]
      X.T. Chen, M. Zhou, Y. Zhao, et al., Correction: Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth, Green Chem., 24(2022), No. 15, p. 6036. doi: 10.1039/D2GC90058K

    Catalog


    • /

      返回文章
      返回