Cite this article as:

Wenxiong Chen, and Honglong Xing, Construction of enhanced multi-polarization and high performance electromagnetic wave absorption by self-growing ZnFe2O4 on Cu9S5, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp.1922-1934. https://dx.doi.org/10.1007/s12613-023-2795-2
Wenxiong Chen, and Honglong Xing, Construction of enhanced multi-polarization and high performance electromagnetic wave absorption by self-growing ZnFe2O4 on Cu9S5, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp.1922-1934. https://dx.doi.org/10.1007/s12613-023-2795-2
引用本文 PDF XML SpringerLink

Cu9S5表面自生长ZnFe2O4构建多极化和高性能电磁波吸收的三维花状复合材料

摘要: 具有电磁波吸收性能的三维结构复合材料的开发是有效衰减电磁波的策略。在此,通过多步水热法设计并制备了磁化花状Cu9S5/ZnFe2O4复合材料。对复合材料的晶体结构、表面化学信息、形貌结构、磁性和电磁参数进行了分析。所制备的Cu9S5/ZnFe2O4复合材料具有多重电磁波损耗路径,呈现出整体三维花状结构。Cu9S5/ZnFe2O4复合材料的最小反射损耗值为–54.38 dB,且具有5.92 GHz的宽有效吸收带宽。通过对材料的磁化修饰,ZnFe2O4颗粒在Cu9S5表面自组装生长。这种修饰有利于产生更多的交联接触点,有效引入大量的相界面、晶体缺陷和特殊的三维花状结构,有效引入磁电耦合损耗效应。此外,多种损耗策略的协同作用有效提高了材料的电磁波吸收性能。该工作为磁化修饰硫化物复合功能材料在电磁波吸收领域的应用提供了一种策略。

 

Construction of enhanced multi-polarization and high performance electromagnetic wave absorption by self-growing ZnFe2O4 on Cu9S5

Abstract: The development of 3D structural composites with electromagnetic (EM) wave absorption could attenuate EM waves. Herein, magnetized flower-like Cu9S5/ZnFe2O4 composites were fabricated through a multistep hydrothermal method. The crystallographic and surface phase chemical information, morphological structure, and magnetic and EM parameters of the composites were analyzed. The prepared Cu9S5/ZnFe2O4 composites have multiple loss paths for EM waves and present an overall 3D flower-like structure. The Cu9S5/ZnFe2O4 composites exhibit a minimum reflection loss of −54.38 dB and a broad effective absorption bandwidth of 5.92 GHz. Through magnetization, ZnFe2O4 particles are self-assembled and grown on the surfaces of Cu9S5. Such a modification is conducive to the generation of additional cross-linking contact sites and the effective introduction of a large number of phase interfaces, crystalline defects, special three-dimensional flower-like structures, and magneto–electrical coupling loss effects. Moreover, the synergistic effect of multiple loss strategies effectively improves EM wave absorption by the material. This work can provide a strategy for the use of magnetization-modified sulfide composite functional materials in EM wave absorption.

 

/

返回文章
返回