Cite this article as:

S. Abazari, A. Shamsipur, H.R. Bakhsheshi-Rad, M.S. Soheilirad, F. Khorashadizade, and S.S. Mirhosseini, MgO-attached graphene nanosheet (MgO@GNS) reinforced magnesium matrix nanocomposite with superior mechanical, corrosion and biological performance, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp.2062-2076. https://dx.doi.org/10.1007/s12613-023-2797-0
S. Abazari, A. Shamsipur, H.R. Bakhsheshi-Rad, M.S. Soheilirad, F. Khorashadizade, and S.S. Mirhosseini, MgO-attached graphene nanosheet (MgO@GNS) reinforced magnesium matrix nanocomposite with superior mechanical, corrosion and biological performance, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp.2062-2076. https://dx.doi.org/10.1007/s12613-023-2797-0
引用本文 PDF XML SpringerLink

具有优异力学、腐蚀和生物性能的氧化镁附着石墨烯纳米片(MgO@GNS)增强镁基纳米复合材料

摘要: 镁合金具有良好的生物可降解性和生物相容性,因此作为人体植入材料越来越受重视。然而,镁合金的耐蚀性和抗菌活性较低。本研究采用半粉末冶金法和热挤压法制备氧化镁@石墨烯纳米片/镁(MgO@GNS/Mg)复合材料,以改善其力学、耐腐蚀和细胞相容性等特性。研究发现,MgO@GNS纳米复合物加入镁基复合材料中可提高显微硬度和抗压强度。体外成骨细胞培养试验表明, MgO@GNS 纳米复合填可增强成骨细胞的粘附性和磷灰石矿化。MgO@GNS纳米粒子的存在减少了复合材料的开口缺陷、微裂缝和微孔,从而可有效阻止腐蚀溶液对基体渗透。研究表明,MgO@GNS/Mg复合材料具有优异的抗菌性能,这归因于MgO的活性氧释放和石墨烯纳米片锋利边缘对细菌膜的物理破坏从而促进对细菌脂质双分子层的渗透。因此,具有高强度、抗菌活性和耐蚀性的 MgO@GNS/Mg 复合材料被认为是一种很有前景的承重植入材料。

 

MgO-attached graphene nanosheet (MgO@GNS) reinforced magnesium matrix nanocomposite with superior mechanical, corrosion and biological performance

Abstract: Magnesium (Mg) alloys are gaining great consideration as body implant materials due to their high biodegradability and biocompatibility. However, they suffer from low corrosion resistance and antibacterial activity. In this research, semi-powder metallurgy followed by hot extrusion was utilized to produce the magnesium oxide@graphene nanosheets/magnesium (MgO@GNS/Mg) composite to improve mechanical, corrosion and cytocompatibility characteristics. Investigations have revealed that the incorporation of MgO@GNS nanohybrids into Mg-based composite enhanced microhardness and compressive strength. In vitro, osteoblast cell culture tests show that using MgO@GNS nanohybrid fillers enhances osteoblast adhesion and apatite mineralization. The presence of MgO@GNS nanoparticles in the composites decreased the opening defects, micro-cracks and micro-pores of the composites thus preventing the penetration of the corrosive solution into the matrix. Studies demonstrated that the MgO@GNS/Mg composite possesses excellent antibacterial properties because of the combination of the release of MgO and physical damage to bacterium membranes caused by the sharp edges of graphene nanosheets that can effectively damage the cell wall thereby facilitating penetration into the bacterial lipid bilayer. Therefore, the MgO@GNS/Mg composite with high mechanical strength, antibacterial activity and corrosion resistance is considered to be a promising material for load-bearing implant applications.

 

/

返回文章
返回