留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 5
May  2024

图(10)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1638
  • HTML全文浏览量:  298
  • PDF下载量:  80
  • 被引次数: 0
Qiuping Li, Guanghua Wen, Fuhang Chen, Ping Tang, Zibing Hou, and Xinyun Mo, Irregular initial solidification by mold thermal monitoring in the continuous casting of steels: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 1003-1015. https://doi.org/10.1007/s12613-023-2798-z
Cite this article as:
Qiuping Li, Guanghua Wen, Fuhang Chen, Ping Tang, Zibing Hou, and Xinyun Mo, Irregular initial solidification by mold thermal monitoring in the continuous casting of steels: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 1003-1015. https://doi.org/10.1007/s12613-023-2798-z
引用本文 PDF XML SpringerLink
特约综述

利用连铸结晶器热监控预测钢非规则初始凝固的研究进展


  • 通讯作者:

    文光华    E-mail: wengh@cqu.edu.cn

文章亮点

  • (1) 综述了结晶器热监控系统监测非规则凝固现象的研究现状。
  • (2) 分析了保护渣在结晶器内部的行为对监测非规则初始凝固现象的影响。
  • (3) 总结了结晶器热监控对非规则初始凝固现象监测的研究不足和未来发展方向。
  • 连铸结晶器内偶然发生的非规则初始凝固现象,包括粘结、深振痕、凹陷和裂纹等铸坯质量问题,是目前制约高效连铸发展的重要因素。结晶器热监控系统基于在钢液初始凝固过程中传热引起的温度变化,利用热电偶测温技术对结晶器内部情况进行实时监测与评估,成为了解决非规则凝固问题的有效方法。此系统已被广泛应用于众多钢铁公司进行粘结漏钢预报,但对于凹陷、纵裂等表面质量问题的监测仍不成熟。因此,有必要通过深入研究,以发挥MTM系统的潜在优势进行结晶器内部情况的全面监控。本文总结了非规则初始凝固现象的特点,并系统综述了结晶器热监控系统对这些现象的研究现状。此外,还分析了保护渣在结晶器内部的行为对非规则初始凝固现象监测的影响。最后,讨论了非规则初始凝固现象的形成机理和监测情况的不足,并进一步探讨了未来的发展方向。
  • Invited Review

    Irregular initial solidification by mold thermal monitoring in the continuous casting of steels: A review

    + Author Affiliations
    • Occasional irregular initial solidification phenomena, including stickers, deep oscillation marks, depressions, and surface cracks of strand shells in continuous casting molds, are important limitations for developing the high-efficiency continuous casting of steels. The application of mold thermal monitoring (MTM) systems, which use thermocouples to detect and respond to temperature variations in molds, has become an effective method to address irregular initial solidification phenomena. Such systems are widely applied in numerous steel companies for sticker breakout prediction. However, monitoring the surface defects of strands remains immature. Hence, in-depth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems. This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems. Furthermore, the influences of mold slag behavior on monitoring these phenomena are analyzed. Finally, the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed, and future research directions are proposed.
    • loading
    • [1]
      S. Luo, Y.W. Yang, W.L. Wang, and M.Y. Zhu, Development of electromagnetic flow control technology for high speed casting mold, J. Mater. Metall., 22(2023), No. 1, p. 1.
      [2]
      M.Y. Zhu, Some considerations for new generation of high-efficiency continuous casting technology development, Iron Steel, 54(2019), No. 8, p. 21.
      [3]
      C. Bernhard, H. Hiebler, and M.M. Wolf, How fast can we cast? Ironmaking Steelmaking, 27(2000), No. 6, p. 450. doi: 10.1179/030192300677778
      [4]
      W.W. Wolf, Strand surface quality and the peritectic reaction-A look into the basics, [in] Steelmaking Conference Proceedings, Toronto, 1988, p. 53.
      [5]
      T. Xu, G. Song, Y. Yang, P.X. Ge, and L.X. Tang, Visualization and simulation of steel metallurgy processes, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1387. doi: 10.1007/s12613-021-2283-5
      [6]
      J.K. Brimacombe and K. Sorimachi, Crack formation in the continuous casting of steel, Metall. Trans. B, 8(1977), No. 2, p. 489. doi: 10.1007/BF02696937
      [7]
      B.G. Thomas, M.S. Jenkins, and R.B. Mahapatra, Investigation of strand surface defects using mould instrumentation and modelling, Ironmaking Steelmaking, 31(2004), No. 6, p. 485. doi: 10.1179/030192304225019261
      [8]
      D. Stewart, P.N. Hewitt, and L.P Peter, Prediction of longitudinal cracks in slab continuous casting, [in] Proc. 79th Steelmaking Conf., Pittsburgh, PA, 1996, p. 207.
      [9]
      L. Dirk, K. Artemy, R. Markus, S. Thomas, and K. Dieter, Bloom quality control using the fiber optical “HD mold” monitoring system, [in] Proc. 8th Eur. Continuous Casting Conf., Graz, 2014.
      [10]
      C. Geerkens, J. Wans, L. Dirk, K. Artemy, and M. Klein, Special technologies and new developments to improve slab quality, [in] 46th Steelmaking Seminar International, Rio de Janeiro, 2015.
      [11]
      P. Hooli, Study on the Layers in the Film Originating from the Casting Powder between Steel and Mold and Associated Phenomena in Continuous Casting of Stainless Steel [Dissertation], Helsinki University of Technology, Espoo, 2007, p. 60.
      [12]
      W.W. Wolf, Initial solidification and strand surface quality of peritectic steels, [in] C.E. Slater, K.A. Catanzarite, W. Silvonic, M.A. Sample, and M.L. Rhone, eds., Continuous Casting, Vol. 9, The Iron and Steel Society, Warrendale, PA, 1997, p. 9.
      [13]
      K.E. Blazek and I.G. Saucedo, Characterization of the formation, propagation, and recovery of sticker/hanger type breakouts, ISIJ Int., 30(1990), No. 6, p. 435. doi: 10.2355/isijinternational.30.435
      [14]
      S. Itoyama, Y. Habu, K.I. Sorimachi, A. Kawaharada, and S. Yabe, Mechanism of formation and method of detection of breakout caused by sticking between mould and slab in continuous casting of steel, Tetsu-to-Hagané, 68(1982), No. 7, p. 784. doi: 10.2355/tetsutohagane1955.68.7_784
      [15]
      C.Å. Däcker, Case study-mold powder, [in] Swerea KIMAB, Stockholm, 2003, p. 534.
      [16]
      M. Suzuki, H. Mizukami, T. Kitagawa, K. Kawakami, S. Uchida, and Y. Komatsu, Development of a new mold oscillation mode for high-speed continuous casting of steel slabs, ISIJ Int., 31(1991), No. 3, p. 254. doi: 10.2355/isijinternational.31.254
      [17]
      H.J. Shin, S.H. Kim, B.G. Thomas, G.G. Lee, J.M. Park, and J. Sengupta, Measurement and prediction of lubrication, powder consumption, and oscillation mark profiles in ultra-low carbon steel slabs, ISIJ Int., 46(2006), No. 11, p. 1635. doi: 10.2355/isijinternational.46.1635
      [18]
      M.H. Cao, Y.H. Liu, and X.Z. Zhang, Investigation on initial shell solidification and the effect of negative strip time on oscillation marks during continuous casting, Metals, 13(2023), No. 4, p. 726. doi: 10.3390/met13040726
      [19]
      M.H. Cao, Y.H. Liu, B. Yu, C. Zhou, and X.Z. Zhang, Modeling study on the initial solidification and formation of oscillation marks in continuous casting mold, Trans. Indian Inst. Met., 77(2024), No. 1, p. 51. doi: 10.1007/s12666-023-03040-x
      [20]
      P.E. Ramirez Lopez, K.C. Mills, P.D. Lee, and B. Santillana, A unified mechanism for the formation of oscillation marks, Metall. Mater. Trans. B, 43(2012), No. 1, p. 109. doi: 10.1007/s11663-011-9583-5
      [21]
      Y.K. Deng, Y.B. Zhang, Q.Q. Wang, and Q. Wang, Study of mold oscillation parameters and modes on slag lubrication in slab continuous casting, JOM, 70(2018), No. 12, p. 2909. doi: 10.1007/s11837-018-3028-4
      [22]
      C. Zhou, X.Z. Zhang, F. Wang, and S.B. Ren, Construction of nonsinusoidal oscillation waveform function and technological parameters for continuous casting mold, Complexity, 2020(2020), art. No. 4165689.
      [23]
      J. Sengupta, B.G. Thomas, H.J. Shin, G.G. Lee, and S.H. Kim, A new mechanism of hook formation during continuous casting of ultra-low-carbon steel slabs, Metall. Mater. Trans. A, 37(2006), No. 5, p. 1597. doi: 10.1007/s11661-006-0103-1
      [24]
      J. Sengupta, H.J. Shin, B.G. Thomas, and S.H. Kim, Micrograph evidence of meniscus solidification and sub-surface microstructure evolution in continuous-cast ultralow-carbon steels, Acta Mater., 54(2006), No. 4, p. 1165. doi: 10.1016/j.actamat.2005.10.044
      [25]
      H. Yamamura, Y. Mizukami, and K. Misawa, Formation of a solidified hook-like structure at the subsurface in ultra low carbon steel, ISIJ Int., 36(1996), p. S223. doi: 10.2355/isijinternational.36.Suppl_S223
      [26]
      T.T. Li, J. Yang, F.X. Hung, K. Zhu, and X.W. Pei, Overview of formation mechanism and control technology of hooks in continuous casting slab, Steelmaking, 31(2021), No. 1, p. 44.
      [27]
      E. Takeuchi and J.K. Brimacombe, Effect of oscillation-mark formation on the surface quality of continuously cast steel slabs, Metall. Trans. B, 16(1985), No. 3, p. 605. doi: 10.1007/BF02654859
      [28]
      X.B. Zhang, W. Chen, P.R. Scheller, Y. Ren, and L.F. Zhang, Mathematical modeling of initial solidification and slag infiltration at the meniscus of slab continuous casting mold, JOM, 71(2019), No. 1, p. 78. doi: 10.1007/s11837-018-3177-5
      [29]
      M.S. Jenkin and B.G. Thomas, An investigation of some mold powder related start-up problems, [in] Proc. 80th Steelmaking Conf., Chicago, 1997, p. 285.
      [30]
      B. G. Thomas, D. Lui, and B. Ho, Effect of transverse depressions and oscillation marks on heat transfer in the continuous casting mold, [in] Proceedings of the 1997 TMS Annual Meeting, Orlando, 1997, p. 117.
      [31]
      M.S. Jenkin, B.G. Thomas, W.C. Chen, and R.B. Mahapatra, [in] Proc. 77th Steelmaking Conf., Chicago, 1994, p. 337.
      [32]
      F.H. Chen, G.H. Wen, P. Tang, et al., Optimization of mold powders for high-nitrogen stainless steel based on mold thermocouple temperature variation, Steel Res. Int., 94(2023), No. 11, art. No. 2300154. doi: 10.1002/srin.202300154
      [33]
      J. Yu, H.C. Zhang, D.W. Deng, A. Iqbal, and S.Z. Hao, Simulation and experiment for crack arrest in remanufacturing, Int. J. Adv. Manuf. Technol., 87(2016), No. 5, p. 1547.
      [34]
      Y. Meng and B.G. Thomas, Heat-transfer and solidification model of continuous slab casting: CON1D, Metall. Mater. Trans. B, 34(2003), No. 5, p. 685. doi: 10.1007/s11663-003-0040-y
      [35]
      E.S. Pan, L. Ye, J.J. Shi, and T.S. Chang, On-line bleeds detection in continuous casting processes using engineering-driven rule-based algorithm, J. Manuf. Sci. Eng., 131(2009), No. 6, art. No. 061008. doi: 10.1115/1.4000560
      [36]
      Q.H. Li, P. Lan, H.J. Wang, H.Z. Ai, D.L. Chen, and H.D. Wang, Formation and control of the surface defect in hypo-peritectic steel during continuous casting: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2281. doi: 10.1007/s12613-023-2716-4
      [37]
      M.R. Ozgu and B. Kocatulum, Thermal analysis of the burns harbor No. 2 slab caster mold, Iron Steelmaker, 21(1994), No. 5, p. 77.
      [38]
      R.M. McDavid and B.G. Thomas, Flow and thermal behavior of the top surface flux/powder layers in continuous casting molds, Metall. Mater. Trans. B, 27(1996), No. 4, p. 672. doi: 10.1007/BF02915666
      [39]
      Y. Li, X.H. Zhang, P. Lan, and J.Q. Zhang, Control of mould level fluctuation through the modification of steel composition, Int. J. Miner. Metall. Mater., 20(2013), No. 2, p. 138. doi: 10.1007/s12613-013-0705-8
      [40]
      A. Hajari and M. Meratian, Surface turbulence in a physical model of a steel thin slab continuous caster, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 697. doi: 10.1007/s12613-010-0376-7
      [41]
      T. Zhang, J. Yang, G.J. Xu, H.J. Liu, J.J. Zhou, and W. Qin, Effects of operating parameters on the flow field in slab continuous casting molds with narrow widths, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 238. doi: 10.1007/s12613-020-1988-1
      [42]
      A.S. Normanton, P.N. Hewitt, N.S. Hunter, D. Scoones, and B. Harris, Mould thermal monitoring: A window on the mould, Ironmaking Steelmaking, 31(2004), No. 5, p. 357. doi: 10.1179/030192304225019225
      [43]
      A.S. Normanton, V. Ludlow, B. Harris, S. Riaz, and N.S. Hunter, Tools and techniques for use in development of mould powders, Ironmaking Steelmaking, 35(2008), No. 4, p. 283. doi: 10.1179/174328107X247798
      [44]
      R.B. Mahapatra, J.K. Brimacombe, and I.V. Samarasekera, Mold behavior and its influence on quality in the continuous casting of steel slabs: Part II. Mold heat transfer, mold flux behavior, formation of oscillation marks, longitudinal off-corner depressions, and subsurface cracks, Metall. Trans. B, 22(1991), No. 6, p. 875. doi: 10.1007/BF02651164
      [45]
      J. Watzinger, A. Pesek, N. Huebner, M. Pillwax, and O. Lang, MoldExpert–operational experience and future development, Ironmaking Steelmaking, 32(2005), No. 3, p. 208. doi: 10.1179/174328105X45848
      [46]
      B.G. Thomas Modeling of the continuous casting of steel—Past, present, and future, Metall. Mater. Trans. B, 33(2002), No. 6, p. 795. doi: 10.1007/s11663-002-0063-9
      [47]
      C.A.M. Pinheiro, I.V. Samarasekera, J.K. Brimacomb, and B.N. Walker, Mould heat transfer and continuously cast billet quality with mould flux lubrication Part 1 Mould heat transfer, Ironmaking Steelmaking, 27(2000), No. 1, p. 37. doi: 10.1179/030192300677363
      [48]
      S. Zhu, Q.Y. Zhao, X.L. Li, Y. Liu, T.C. Li, and T.A. Zhang, Flow and penetration behavior of submerged side-blown gas, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1067. doi: 10.1007/s12613-022-2585-2
      [49]
      M.N. Duan, C.B. Feng, J.H. Yang, W. Yuan, and Yang, K. Thermal and mechanical couple stress analysis of mould copper for slab continuous casting, Iron Steel, 43(2008), No. 5, p. 30.
      [50]
      Z. Chen and H.Z. Qian, Finite element method anaysis of slab continuous casting mold heat, Shougang Sci. Tech., 5(2011), p. 5.
      [51]
      G. Alvarez De Toledo, J. Ciriza, and J.J. Laraudogoitia, Abnormal transient phenomena in the continuous casting process: Part 1, Ironmaking Steelmaking, 30(2003), No. 5, p. 353. doi: 10.1179/030192303225004042
      [52]
      L.L. Guo, X.D. Wang, H.Y. Zhan, M. Yao, and D.C. Fang, Mould heat transfer in the continuous casting of round billet, ISIJ Int., 47(2007), No. 8, p. 1108. doi: 10.2355/isijinternational.47.1108
      [53]
      M. Yao, H.B. Yin, and D.C. Fang, Real-time analysis on non-uniform heat transfer and solidification in mould of continuous casting round billets, ISIJ Int., 44(2004), No. 10, p. 1696. doi: 10.2355/isijinternational.44.1696
      [54]
      Y. Hashimoto, A. Matsui, T. Hayase, and M. Kano, Real-time estimation of molten steel flow in continuous casting mold, Metall. Mater. Trans. B, 51(2020), No. 2, p. 581. doi: 10.1007/s11663-020-01775-2
      [55]
      T. Spierings, A. Kamperman, H. Hengeveld, J. Kromhout, and E. Dekker, Development and application of fiber bragg gratings for slab casting, [in] AISTech 2017 Proceedings of the Iron and Steel Technology Conferenc, Nashville, 2017.
      [56]
      D. Lieftucht, M. Reifferscheid, T. Schramm, A. Krasilnikov, and D. Kirsch, HD Mold-a new fiber-optic-based mold monitoring system, Iron Steel Technol., 10(2013), No. 12, p. 87.
      [57]
      G. Hedin, A. Kamperman, M. Sedén, K. Fröjdh, and J. Pejnefors, Exploring opportunities in mold temperature monitoring utilizing fiber bragg gratings, [in] Scan Met V Conference Proceedings, Swerea, 2016.
      [58]
      M. Sedén, H. Yang, K. Frjdh, J. Pejnefors, and E. Dekker, Sensure dynamic mold flow control with FC mold and optimold monitors, [in] 9th ECCC, Vienna, 2017, p. 67.
      [59]
      B.H. Zhang, H. Tekle, R.J. O’Malley, et al., In situ and real-time mold flux analysis using a high-temperature fiber-optic Raman sensor for steel manufacturing applications, J. Light. Technol., 41(2023), No. 13, p. 4419. doi: 10.1109/JLT.2023.3239428
      [60]
      I. Mazza, S. Miani, G. Schiavon, and S. Spagnul, Contactless mold thermal mapping at meniscus through an innovative ultrasonic sensor, [in] Proceedings of ICS 2018, Venice, 2018.
      [61]
      I. Mazza, S. Miani, G. Schiavon, and S. Spagnul, New field results on ultrasonic mold thermal mapping for quality improvement and initial solidification diagnostics, [in] AISTech 2022 Proceedings of the Iron and Steel Technology Conference, Pittsburgh, PA, 2022, p. 685.
      [62]
      I. Mazza, S. Miani, S. Spagnul, and G. Schiavon, Contactless mold thermal mapping: a new tool for metallurgists, quality control and productivity improvement, [in] AISTech 2020 Proceedings of the Iron and Steel Technology Conference, Pittsburgh, PA, 2020, p. 380.
      [63]
      I. Mazza, S. Miani, G. Schiavon, and S. Spagnul, Real-time and contactless mold thermal monitoring: Improving metallurgy, quality and productivity of billets and blooms, Berg Huettenmaenn Monatsh, 165(2020), No. 1, p. 11. doi: 10.1007/s00501-019-00940-8
      [64]
      I. Mazza, S. Miani, G. Schiavon, and S. Spagnul, The mold temperature mapping with ultrasonic contactless technology is the key for the real-time initial solidification process control tools, La Metallurgia Italiana, 4(2022), p. 107.
      [65]
      X. Qin, C.F. Zhu, Y.R. Yin, and X.R. Dong, Forecasting of molten steel breakouts for the slab continuous casters with hydraulic servo oscillation systems, Iron Steel, 45(2010), No. 11, p. 97.
      [66]
      F. He, L. Zhou, and Z.H. Deng, Novel mold breakout prediction and control technology in slab continuous casting, J. Process. Contr., 29(2015), p. 1. doi: 10.1016/j.jprocont.2015.03.003
      [67]
      Y. Liu, X.D. Wang, F.M. Du, et al., Computer vision detection of mold breakout in slab continuous casting using an optimized neural network, Int. J. Adv. Manuf. Technol., 88(2017), No. 1, p. 557.
      [68]
      B.G. Zhang, Q. Li, G. Wang, and Y. Gao, Breakout prediction based on BP neural network of LM algorithm in continuous casting process, [in] 2010 International Conference on Measuring Technology and Mechatronics Automation, Changsha, 2010, p. 765.
      [69]
      X.D. Wang, M. Yao, and X.F. Chen, Development of prediction method for abnormalities in slab continuous casting using artificial neural network models, ISIJ Int., 46(2006), No. 7, p. 1047. doi: 10.2355/isijinternational.46.1047
      [70]
      Y.Y. Wang, X.D. Wang, and M. Yao, Integrated model of ACWGAN-GP and computer vision for breakout prediction in continuous casting, Metall. Mater. Trans. B, 53(2022), No. 5, p. 2873. doi: 10.1007/s11663-022-02571-w
      [71]
      S. Itoyama, H. Yamanaka, and S. Tanaka, Prediction and prevention system for sticking type breakout in continuous casting, [in] Proc. 71th Steelmaking Conf., Toronto, 1988, p. 97.
      [72]
      L.G. Sun and J.Q. Zhang, Research on slab leakage prediction system based on logic judgment, Metall. Ind. Autom., 33(2009), No. 1. p. 16.
      [73]
      W.H. Emling, S. Dawson, A.W. Cramb and E. S. Szckcrcs, In mold operation for quality and productivity, [in] Steelmaking Conf. Proc., Warrendalc, 1991, p. 161.
      [74]
      Y.P. Tian and Y. Liu, Intelligent breakout prediction method based on support vector machine, J. Phys.: Conf. Ser., 1653(2020), No. 1, art. No. 012052. doi: 10.1088/1742-6596/1653/1/012052
      [75]
      H.Y. Duan, X.D. Wang, Y. Bai, M. Yao, and Q.T. Guo, Integrated approach to density-based spatial clustering of applications with noise and dynamic time warping for breakout prediction in slab continuous casting, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2343. doi: 10.1007/s11663-019-01633-w
      [76]
      C.Y. Shi, S.Y. Guo, J. Chen, et al., Breakout prediction based on twin support vector machine of improved whale optimization algorithm, ISIJ Int., 63(2023), No. 5, p. 880. doi: 10.2355/isijinternational.ISIJINT-2022-372
      [77]
      M.O. Ansari, J. Ghose, S. Chattopadhyaya, et al., An intelligent logic-based mold breakout prediction system algorithm for the continuous casting process of steel: A novel study, Micromachines, 13(2022), No. 12, art. No. 2148. doi: 10.3390/mi13122148
      [78]
      J. Zhao, Breakout prediction system based on thermocouples, Metall. Res. Technol., 36(2012), No. 6, p. 16.
      [79]
      X.X. Liu, P.Z. Liu, and J.Q. Zhou, Numerical simulation and prediction for sticking type breakout behavior in slab contiuous casting, J. Univ. Sci. Technol. Beijing, 19(1997), No. 2, p. 143.
      [80]
      H. Yang, Y.M. He, C.J. Zhang, S.Q. Xu, and J.G. Zhang, Application of breakout prediction system for 2# slab caster in Chongqing steel, [in] Proceedings of the 2012 National Steelmaking Continuous Casting Production Technology Conference, Chongqing, 2012, p. 85.
      [81]
      Y. Liu, Y.P. Tian, X.D. Wang, and Y.L. Gao, Influence of processing parameters on slab stickers during continuous casting, High Temp. Mater. Process., 39(2020), No. 1, p. 228. doi: 10.1515/htmp-2020-0065
      [82]
      B. Wang, B.N. Walker, and I.V. Samarasekera, Shell growth, surface quality and mould taper design for high-speed casting of stainless steel billets, Can. Metall. Q., 39(2000), No. 4, p. 441. doi: 10.1179/cmq.2000.39.4.441
      [83]
      S. Kumar, J.A. Meech, I.V. Samarasekera, J.K. Brimacombe, and V. Rakocevic, Development of intelligent mould for online detection of defects in steel billets, Ironmaking Steelmaking, 26(1999), No. 4, p. 269. doi: 10.1179/030192399677130
      [84]
      I.V. Samarasekera and J.K. Brimacombe, Evolution or revolution? —A new era in billet casting, Can. Metall. Q., 38(1999), No. 5, p. 347.
      [85]
      P. Xu, S.J. Wang, Y.Z. Zhou, D.F. Chen, M.J. Long, and H.M. Duan, Thickness distributions of mold flux film and air gap in billet ultra-high speed continuous casting mold through multiphysics modeling, Front. Mater., 9(2022), art. No. 841961. doi: 10.3389/fmats.2022.841961
      [86]
      Z.Y. Niu, F.S. Du, J.Y. Jiang, and H. Yu, A novel control technique for longitudinal off-corner depressions on wide faces of continuous casting slabs: Effect of the mold design on controlling LOCDs, Metall. Mater. Trans. B, 54(2023), No. 4, p. 1900. doi: 10.1007/s11663-023-02803-7
      [87]
      H.Y. Duan, J.J. Wei, L. Qi, X.D. Wang, Y. Liu, and M. Yao, Longitudinal crack detection approach based on principal component analysis and support vector machine for slab continuous casting, Steel Res. Int., 92(2021), No. 10, art. No. 2100168. doi: 10.1002/srin.202100168
      [88]
      F.M. Du, X.D. Wang, Y. Liu, J.J. Wei, and M. Yao, Prediction of longitudinal cracks based on a full-scale finite-element model coupled inverse algorithm for a continuously cast slab, Steel Res. Int., 88(2017), No. 10, art. No. 1700013. doi: 10.1002/srin.201700013
      [89]
      Y. Liu, X.D. Wang, Y. Sun, et al., Research on a new detection method of slab surface crack in mould during continuous casting, Metall. Res. Technol., 115(2017), No. 1, art. No. 108.
      [90]
      H.Y. Duan, X.D. Wang, and M. Yao, Development of prediction method for mold sticking breakout based on density-based spatial clustering of applications with noise and dynamic time warping, Chin. J. Eng., 42(2020), No. 3, p. 348.
      [91]
      S. Carless, A. Westendorp, A. Kamperman, and J. Brockhoff, Optimization of Surface Quality through Mold Thermal Monitoring, [in] AISTech 2010 Proceedings, Pittsburgh, 2010. p.105.
      [92]
      I. Sohn and A. Sinha, Mold thermocouple locations and their impact on prevention of caster breakouts, Mater. Sci. Forum, 654-656(2010), p. 394. doi: 10.4028/www.scientific.net/MSF.654-656.394
      [93]
      D. Lieftucht, M. Arzberger, M. Reifferscheid, and J. Schlüter, Online prediction of longitudinal facial cracks in thin slab casting using principal component analysis, J. Iron Steel Res. Int., 15(2008), Suppl. 1, p. 255.
      [94]
      H. Nakato, M. Ozawa, K. Kinoshita, Y. Habu, and T. Emi, Factors affecting the formation of shell and longitudinal cracks in mold during high speed continuous casting of slabs, Trans. ISIJ, 24(1984), No. 11, p. 957. doi: 10.2355/isijinternational1966.24.957
      [95]
      A. Badri, T.T. Natarajan, C.C. Snyder, K.D. Powers, F.J. Mannion, and A.W. Cramb, A mold simulator for the continuous casting of steel: Part I. The development of a simulator, Metall. Mater. Trans. B, 36(2005), No. 3, p. 355. doi: 10.1007/s11663-005-0065-5
      [96]
      A. Badri, T.T. Natarajan, C.C. Snyder, K.D. Powers, F.J. Mannion, and A.W. Cramb, A mold simulator for continuous casting of steel: Part II. The formation of oscillation marks during the continuous casting of low carbon steel, Metall. Mater. Trans. B, 36(2005), No. 3, p. 373. doi: 10.1007/s11663-005-0066-4
      [97]
      P. Stefan, H. Krupp, and A.G. Stahl, Advanced thermal mold monitoring continuous casting, [in] C.E. Slater, K.A. Catanzarite, W. Silvonic, M.A. Sample, and M.L. Rhone, eds., Continuous Casting, Vol. 9, The Iron and Steel Society, Warrendale, PA, 1997, p. 431.
      [98]
      I. Sohn, T. J. Piccone, T. Natarajan, and W. Schlichting, Initial study on the effect of mold copper thickness on sticker, flux entrapment and bleeder events at U. S. Steel, [in] AISTech 2009 Proceedings of the Iron and Steel Technology Conference, St. Louis, 2009, p. 1217.
      [99]
      J.A. Kromhout, Mould Powders for High-speed Continuous Casting of Steel [Dissertation], Delft University of Technology, Delft, 2011, p.157
      [100]
      R.J. O’Malley and J. Neal, An examination of mold flux film structures and mold gap behavior using mold thermal monitoring and petrographic analysis at armco’s mansfield operations, [in] METEC Congress 99, Dusseldorf, 1999, p.1.
      [101]
      H. Lopez, A. Robles, I. Machon, E. Fernandez, and L.F. Sancho, Temperature monitoring system in the mould of a slab continuous casting line, [in] 2007 IEEE International Symposium on Industrial Electronics, Vigo, 2007, p. 175.
      [102]
      H.M. Zhao, X.H. Wang, and J.M. Zhang, Research on mold flux for hypo-peritectic steel at high casting speed, J. Univ. Sci. Technol. Beijing, 14(2007), No. 3, p. 219. doi: 10.1016/S1005-8850(07)60042-5
      [103]
      G. Alvarez De Toledo, J. Ciriza, J.J. Laraudogoitia, and A. Arteaga, Abnormal transient phenomena in the continuous casting process: Part 2, Ironmaking Steelmaking, 30(2003), No. 5, p. 360. doi: 10.1179/030192303225004051
      [104]
      E. Nolte, J. D. Smith, M. Frazee, N. Sutcliffe and R. J. O’Malley, Application of cathodoluminescence in analyzing mold flux films, advances in molten slags, fluxes, and salts, [in] Proc. 10th Int. Conf. on Molten Slags , Fluxes , and Salts, Seattle, 2016, p. 317.
      [105]
      R. O’Malley, E. Peterson, J. Smith, S. Jaunch, M. MClymonds, and N. Sutcliffe, Influence of mold flux crystallite film fracture on thermal fluctuations in a thin-slab funnel mold, Iron Steel Technol., 15(2018), No. 8. p. 58.
      [106]
      J.A. Kromhout, S.P. Carless, E.R. Dekker and C.V. Kralingen, Revealing the unknown: Monitoring the in-mould performance during continuous casting of steel, [in] Proc. 8th Eur. Continuous Casting Conf., Graz, 2014, p. 982.
      [107]
      G.H. Wen, F.H. Chen, W.B. Jiang, Z.B. Hou, and P. Tang, Theory and application of “smart mold powders” for continuous casting of steel, Chin. J. Eng. Des., 44(2022), No. 9, p. 1558.

    Catalog


    • /

      返回文章
      返回