Abstract:
Phosphogypsum (PG), a hard-to-dissipate by-product of the phosphorus fertilizer production industry, places strain on the biogeochemical cycles and ecosystem functions of storage sites. This pervasive problem is already widespread worldwide and requires careful stewardship. In this study, we review the presence of potentially toxic elements (PTEs) in PG and describe their associations with soil properties, anthropogenic activities, and surrounding organisms. Then, we review different
ex-/
in-situ solutions for promoting the sustainable management of PG, with an emphasis on
in-situ cemented paste backfill, which offers a cost-effective and highly scalable opportunity to advance the value-added recovery of PG. However, concerns related to the PTEs’ retention capacity and long-term effectiveness limit the implementation of this strategy. Furthermore, given that the large-scale demand for ordinary Portland cement from this conventional option has resulted in significant CO
2 emissions, the technology has recently undergone additional scrutiny to meet the climate mitigation ambition of the Paris Agreement and China’s Carbon Neutrality Economy. Therefore, we discuss the ways by which we can integrate innovative strategies, including supplementary cementitious materials, alternative binder solutions, CO
2 mineralization, CO
2 curing, and optimization of the supply chain for the profitability and sustainability of PG remediation. However, to maximize the co-benefits in environmental, social, and economic, future research must bridge the gap between the feasibility of expanding these advanced pathways and the multidisciplinary needs.