Cite this article as: |
Yikai Liu, Yunmin Wang, and Qiusong Chen, Using cemented paste backfill to tackle the phosphogypsum stockpile in China: A down-to-earth technology with new vitalities in pollutant retention and CO2 abatement, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1480-1499. https://doi.org/10.1007/s12613-023-2799-y |
陈秋松 E-mail: qiusong.chen@csu.edu.cn
[1] |
S. Bisone, M. Gautier, V. Chatain, and D. Blanc, Spatial distribution and leaching behavior of pollutants from phosphogypsum stocked in a gypstack: Geochemical characterization and modeling, J. Environ. Manage., 193(2017), p. 567. doi: 10.1016/j.jenvman.2017.02.055
|
[2] |
J.M. Wang, Utilization effects and environmental risks of phosphogypsum in agriculture: A review, J. Clean. Prod., 276(2020), art. No. 123337. doi: 10.1016/j.jclepro.2020.123337
|
[3] |
D. Tonini, H.G.M. Saveyn, and D. Huygens, Environmental and health co-benefits for advanced phosphorus recovery, Nat. Sustain., 2(2019), p. 1051. doi: 10.1038/s41893-019-0416-x
|
[4] |
U.S. Geological Survey, Mineral Commodity Summaries 2022, U.S. Geological Survey, 2022, https://doi.org/10.3133/MCS2022.
|
[5] |
L.F.O. Silva, M.L.S. Oliveira, T.J. Crissien, et al., A review on the environmental impact of phosphogypsum and potential health impacts through the release of nanoparticles, Chemosphere, 286(2022), art. No. 131513. doi: 10.1016/j.chemosphere.2021.131513
|
[6] |
F.W. Zhao, J.H. Hu, Y.N. Yang, H.X. Xiao, and F.C. Ma, Cross-scale study on lime modified phosphogypsum cemented backfill by fractal theory, Minerals, 12(2022), No. 4, art. No. 403. doi: 10.3390/min12040403
|
[7] |
A.I. Nikolaev, V.B. Petrov, Y.V. Pleshakov, Y.G. Bychenya, and G.I. Kadyrova, Dephosphorization of a sphene concentrate with dilute mineral acids, Theor. Found. Chem. Eng., 41(2007), No. 5, p. 730. doi: 10.1134/S004057950705048X
|
[8] |
R. El Zrelli, L. Rabaoui, N. Daghbouj, et al., Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): High mining potential and implications for environmental protection, Environ. Sci. Pollut. Res., 25(2018), No. 15, p. 14690. doi: 10.1007/s11356-018-1648-4
|
[9] |
Y. Chernysh, O. Yakhnenko, V. Chubur, and H. Roubík, Phosphogypsum recycling: A review of environmental issues, current trends, and prospects, Appl. Sci., 11(2021), No. 4, art. No. 1575. doi: 10.3390/app11041575
|
[10] |
D. Cordell, J.O. Drangert, and S. White, The story of phosphorus: Global food security and food for thought, Glob. Environ. Change, 19(2009), No. 2, p. 292. doi: 10.1016/j.gloenvcha.2008.10.009
|
[11] |
R.W. Scholz and F.W. Wellmer, Approaching a dynamic view on the availability of mineral resources: What we may learn from the case of phosphorus?, Glob. Environ. Change, 23(2013), No. 1, p. 11. doi: 10.1016/j.gloenvcha.2012.10.013
|
[12] |
C.E. Nedelciu, K.V. Ragnarsdottir, P. Schlyter, and I. Stjernquist, Global phosphorus supply chain dynamics: Assessing regional impact to 2050, Glob. Food Secur., 26(2020), art. No. 100426. doi: 10.1016/j.gfs.2020.100426
|
[13] |
Y. Lei, Q.W. Zhu, H.X. Chen, and M.M. Wang, Development and application of phosphogypsum in plasterboard, Mater. Sci., 9(2019), No. 1, p. 69.
|
[14] |
J.M. Abril, R. García-Tenorio, R. Periáñez, S.M. Enamorado, L. Andreu, and A. Delgado, Occupational dosimetric assessment (inhalation pathway) from the application of phosphogypsum in agriculture in South West Spain, J. Environ. Radioact., 100(2009), No. 1, p. 29. doi: 10.1016/j.jenvrad.2008.09.006
|
[15] |
J.R. Soares, H. Cantarella, and M.L. de Campos Menegale, Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors, Soil Biol. Biochem., 52(2012), p. 82. doi: 10.1016/j.soilbio.2012.04.019
|
[16] |
B.X. Li, L. Li, X. Chen, Y. Ma, and M.K. Zhou, Modification of phosphogypsum using circulating fluidized bed fly ash and carbide slag for use as cement retarder, Constr. Build. Mater., 338(2022), art. No. 127630. doi: 10.1016/j.conbuildmat.2022.127630
|
[17] |
L. Yang, Y.S. Zhang, and Y. Yan, Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar, J. Clean. Prod., 127(2016), p. 204. doi: 10.1016/j.jclepro.2016.04.054
|
[18] |
M.A. Bagade and S. R. Satone, An experimental investigation of partial replacement of cement by various percentage of Phosphogypsum in cement concrete, Int. J. Eng. Res. Appl., 2(2012), No. 4, . 785.
|
[19] |
S.H. Liu, L. Wang, and B.Y. Yu, Effect of modified phosphogypsum on the hydration properties of the phosphogypsum-based supersulfated cement, Constr. Build. Mater., 214(2019), p. 9. doi: 10.1016/j.conbuildmat.2019.04.052
|
[20] |
X.B. Li, J. Du, L. Gao, et al., Immobilization of phosphogypsum for cemented paste backfill and its environmental effect, J. Clean. Prod., 156(2017), p. 137. doi: 10.1016/j.jclepro.2017.04.046
|
[21] |
Y.K. Liu, Q.S. Chen, M.C. Dalconi, et al., Retention of phosphorus and fluorine in phosphogypsum for cemented paste backfill: Experimental and numerical simulation studies, Environ. Res., 214(2022), art. No. 113775. doi: 10.1016/j.envres.2022.113775
|
[22] |
C.R. Cánovas, S. Chapron, G. Arrachart, and S. Pellet-Rostaing, Leaching of rare earth elements (REEs) and impurities from phosphogypsum: A preliminary insight for further recovery of critical raw materials, J. Clean. Prod., 219(2019), p. 225. doi: 10.1016/j.jclepro.2019.02.104
|
[23] |
W.J. Bao, H.T. Zhao, H.Q. Li, S.G. Li, and W.G. Lin, Process simulation of mineral carbonation of phosphogypsum with ammonia under increased CO2 pressure, J. CO2 Util., 17(2017), p. 125.
|
[24] |
D.Y. Hou, D. O’Connor, A.D. Igalavithana, et al., Metal contamination and bioremediation of agricultural soils for food safety and sustainability, Nat. Rev. Earth Environ., 1(2020), p. 366. doi: 10.1038/s43017-020-0061-y
|
[25] |
E. Saadaoui, N. Ghazel, C. Ben Romdhane, and N. Massoudi, Phosphogypsum: Potential uses and problems–A review, Int. J. Environ. Stud., 74(2017), No. 4, p. 558. doi: 10.1080/00207233.2017.1330582
|
[26] |
A.M. Rashad, Phosphogypsum as a construction material, J. Clean. Prod., 166(2017), p. 732. doi: 10.1016/j.jclepro.2017.08.049
|
[27] |
C.R. Cánovas, F. Macías, R. Pérez-López, M.D. Basallote, and R. Millán-Becerro, Valorization of wastes from the fertilizer industry: Current status and future trends, J. Clean. Prod., 174(2018), p. 678. doi: 10.1016/j.jclepro.2017.10.293
|
[28] |
J. Podgorski and M. Berg, Global analysis and prediction of fluoride in groundwater, Nat. Commun., 13(2022), No. 1, art. No. 4232. doi: 10.1038/s41467-022-31940-x
|
[29] |
M. Wang, X. Li, W.Y. He, et al., Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, southwest China, Environ. Pollut., 249(2019), p. 423. doi: 10.1016/j.envpol.2019.03.044
|
[30] |
R.N. Lieberman, M. Izquierdo, P. Córdoba, et al., The geochemical evolution of brines from phosphogypsum deposits in Huelva (SW Spain) and its environmental implications, Sci. Total Environ., 700(2020), art. No. 134444. doi: 10.1016/j.scitotenv.2019.134444
|
[31] |
R. Allibone, S.J. Cronin, D.T. Charley, V.E. Neall, R.B. Stewart, and C. Oppenheimer, Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu: A novel exposure pathway, Environ. Geochem. Health, 34(2012), No. 2, p. 155. doi: 10.1007/s10653-010-9338-2
|
[32] |
S.T. Zhou, X.B. Li, Y.N. Zhou, C.D. Min, and Y. Shi, Effect of phosphorus on the properties of phosphogypsum-based cemented backfill, J. Hazard. Mater., 399(2020), art. No. 122993. doi: 10.1016/j.jhazmat.2020.122993
|
[33] |
L. Hermann, F. Kraus, and R. Hermann, Phosphorus processing—Potentials for higher efficiency, Sustainability, 10(2018), No. 5, art. No. 1482. doi: 10.3390/su10051482
|
[34] |
Y.H. Xie, J.Q. Huang, H.Q. Wang, et al., Simultaneous and efficient removal of fluoride and phosphate in phosphogypsum leachate by acid-modified sulfoaluminate cement, Chemosphere, 305(2022), art. No. 135422. doi: 10.1016/j.chemosphere.2022.135422
|
[35] |
S.Y. Zhang, Y.L. Zhao, H.X. Ding, J.P. Qiu, and Z.B. Guo, Recycling flue gas desulfurisation gypsum and phosphogypsum for cemented paste backfill and its acid resistance, Constr. Build. Mater., 275(2021), art. No. 122170. doi: 10.1016/j.conbuildmat.2020.122170
|
[36] |
Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B. Zhou, and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
|
[37] |
I.V. Fornés, D. Vaičiukynienė, D. Nizevičienė, V. Doroševas, and B. Michalik, A comparative assessment of the suitability of phosphogypsum from different origins to be utilised as the binding material of construction products, J. Build. Eng., 44(2021), art. No. 102995. doi: 10.1016/j.jobe.2021.102995
|
[38] |
B. Gracioli, C. Angulski da Luz, C.S. Beutler, et al., Influence of the calcination temperature of phosphogypsum on the performance of supersulfated cements, Constr. Build. Mater., 262(2020), art. No. 119961. doi: 10.1016/j.conbuildmat.2020.119961
|
[39] |
T. Lu, W.S. Wang, Z.A. Wei, Y.H. Yang, and G.S. Cao, Experimental study on static and dynamic mechanical properties of phosphogypsum, Environ. Sci. Pollut. Res. Int., 28(2021), No. 14, p. 17468. doi: 10.1007/s11356-020-12148-2
|
[40] |
Y.Q. Liu, D.W. Guo, L. Dong, Y. Xu, and J.C. Liu, Pollution status and environmental sound management (ESM) trends on typical general industrial solid waste, Procedia Environ. Sci., 31(2016), p. 615. doi: 10.1016/j.proenv.2016.02.111
|
[41] |
M. Xia, F. Muhammad, L.H. Zeng, et al., Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer, J. Clean. Prod., 209(2019), p. 1206. doi: 10.1016/j.jclepro.2018.10.265
|
[42] |
Q.S. Chen, Q.L. Zhang, A. Fourie, and C. Xin, Utilization of phosphogypsum and phosphate tailings for cemented paste backfill, J. Environ. Manage., 201(2017), p. 19. doi: 10.1016/j.jenvman.2017.06.027
|
[43] |
Q.S. Chen, Q.L. Zhang, C.C. Qi, A. Fourie, and C.C. Xiao, Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact, J. Clean. Prod., 186(2018), p. 418. doi: 10.1016/j.jclepro.2018.03.131
|
[44] |
H. Tayibi, M. Choura, F.A. López, F.J. Alguacil, and A. López-Delgado, Environmental impact and management of phosphogypsum, J. Environ. Manage., 90(2009), No. 8, p. 2377. doi: 10.1016/j.jenvman.2009.03.007
|
[45] |
H. Liang, P. Zhang, Z. Jin, and D. DePaoli, Rare-earth leaching from Florida phosphate rock in wet-process phosphoric acid production, Miner. Metall. Process., 34(2017), No. 3, p. 146.
|
[46] |
O. Hentati, N. Abrantes, A.L. Caetano, et al., Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants, J. Hazard. Mater., 294(2015), p. 80. doi: 10.1016/j.jhazmat.2015.03.034
|
[47] |
Y.K. Liu, Q.L. Zhang, Q.S. Chen, C.C. Qi, Z. Su, and Z.D. Huang, Utilisation of water-washing pre-treated phosphogypsum for cemented paste backfill, Minerals, 9(2019), No. 3, art. No. 175. doi: 10.3390/min9030175
|
[48] |
Q.S. Chen, S.Y. Sun, Y.M. Wang, Q.L. Zhang, L.M. Zhu, and Y.K. Liu, In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment, Chemosphere, 313(2023), art. No. 137412. doi: 10.1016/j.chemosphere.2022.137412
|
[49] |
W.X. Cao, W. Yi, J.H. Peng, J. Li, and S.H. Yin, Recycling of phosphogypsum to prepare gypsum plaster: Effect of calcination temperature, J. Build. Eng., 45(2022), art. No. 103511. doi: 10.1016/j.jobe.2021.103511
|
[50] |
D.Y. Zhang, H.M. Luo, L.W. Zheng, et al., Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution, J. Hazard. Mater., 241-242(2012), p. 418. doi: 10.1016/j.jhazmat.2012.09.066
|
[51] |
Y. Shi, L. Cheng, M. Tao, S.S. Tong, X.J. Yao, and Y.F. Liu, Using modified quartz sand for phosphate pollution control in cemented phosphogypsum (PG) backfill, J. Clean. Prod., 283(2021), art. No. 124652. doi: 10.1016/j.jclepro.2020.124652
|
[52] |
J.J. Chen, C. Wei, J.Y. Ran, X.D. Su, W. Wang, and J. Zhang, Functional hydrophobic coating for phosphogypsum via stoichiometric silanization, hydrophobic characterization, microstructure analysis, and durability evaluation, Constr. Build. Mater., 347(2022), art. No. 128560. doi: 10.1016/j.conbuildmat.2022.128560
|
[53] |
Q. Cai, J. Jiang, B. Ma, et al., Efficient removal of phosphate impurities in waste phosphogypsum for the production of cement, Sci. Total Environ., 780(2021), art. No. 146600. doi: 10.1016/j.scitotenv.2021.146600
|
[54] |
Y.Q. Huang, J.X. Lu, F.X. Chen, and Z.H. Shui, The chloride permeability of persulphated phosphogypsum-slag cement concrete, J. Wuhan Univ. Technol. Mater Sci Ed, 31(2016), No. 5, p. 1031. doi: 10.1007/s11595-016-1486-5
|
[55] |
Y.T. Liu, D.R. Zhang, L.Y. You, H. Luo, and W. Xu, Recycling phosphogypsum in subbase of pavement: Treatment, testing, and application, Constr. Build. Mater., 342(2022), art. No. 127948. doi: 10.1016/j.conbuildmat.2022.127948
|
[56] |
L.L. Zeng, X. Bian, L. Zhao, Y.J. Wang, and Z.S. Hong, Effect of phosphogypsum on physiochemical and mechanical behaviour of cement stabilized dredged soil from Fuzhou, China, Geomech. Energy Environ., 25(2021), art. No. 100195. doi: 10.1016/j.gete.2020.100195
|
[57] |
N. Degirmenci, A. Okucu, and A. Turabi, Application of phosphogypsum in soil stabilization, Build. Environ., 42(2007), No. 9, p. 3393. doi: 10.1016/j.buildenv.2006.08.010
|
[58] |
S. Çoruh and O.N. Ergun, Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste, J. Hazard. Mater., 173(2010), No. 1-3, p. 468. doi: 10.1016/j.jhazmat.2009.08.108
|
[59] |
N. Degirmenci, The using of waste phosphogypsum and natural gypsum in adobe stabilization, Constr. Build. Mater., 22(2008), No. 6, p. 1220. doi: 10.1016/j.conbuildmat.2007.01.027
|
[60] |
N. Değirmenci, Utilization of phosphogypsum as raw and calcined material in manufacturing of building products, Constr. Build. Mater., 22(2008), No. 8, p. 1857. doi: 10.1016/j.conbuildmat.2007.04.024
|
[61] |
S. Çoruh, S. Elevli, G. Şenel, and O.N. Ergun, Adsorption of silver from aqueous solution onto fly ash and phosphogypsum using full factorial design, Environ. Prog. Sustain. Energy, 30(2011), No. 4, p. 609. doi: 10.1002/ep.10521
|
[62] |
H. Garbaya, A. Jraba, M.A. Khadimallah, and E. Elaloui, The development of a new phosphogypsum-based construction material: A study of the physicochemical, mechanical and thermal characteristics, Materials, 14(2021), No. 23, art. No. 7369. doi: 10.3390/ma14237369
|
[63] |
R. Zmemla, A. Sdiri, I. Naifar, M. Benjdidia, and B. Elleuch, Tunisian phosphogypsum tailings: Assessment of leaching behavior for an integrated management approach, Environ. Eng. Res., 25(2020), No. 3, p. 345.
|
[64] |
S. Zemni, M. Hajji, M. Triki, A. M’nif, and A.H. Hamzaoui, Study of phosphogypsum transformation into calcium silicate and sodium sulfate and their physicochemical characterization, J. Clean. Prod., 198(2018), p. 874. doi: 10.1016/j.jclepro.2018.07.099
|
[65] |
P. Bhawan, A. Nagar, Hazardous Waste Management Series : HAZWAMS, Central Pollution Control Board (Ministry of Environment & Forest), 2010 [2022-12-6]. https://studylib.net/doc/18127268/hazardous-waste-management-series
|
[66] |
S.P. Raut, U.S. Patil, and M.V. Madurwar, Utilization of phosphogypsum and rice husk to develop sustainable bricks, Mater. Today Proc., 60(2022), p. 595. doi: 10.1016/j.matpr.2022.02.122
|
[67] |
N.M. Katamine, Phosphate waste in mixtures to improve their deformation, J. Transp. Eng., 126(2000), No. 5, p. 382. doi: 10.1061/(ASCE)0733-947X(2000)126:5(382)
|
[68] |
M. Rentería-Villalobos, I. Vioque, J. Mantero, and G. Manjón, Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain, J. Hazard. Mater., 181(2010), No. 1-3, p. 193. doi: 10.1016/j.jhazmat.2010.04.116
|
[69] |
S. Meskini, A. Samdi, H. Ejjaouani, and T. Remmal, Valorization of phosphogypsum as a road material: Stabilizing effect of fly ash and lime additives on strength and durability, J. Clean. Prod., 323(2021), art. No. 129161. doi: 10.1016/j.jclepro.2021.129161
|
[70] |
Y. Ennaciri, H. El Alaoui-Belghiti, and M. Bettach, Comparative study of K2SO4 production by wet conversion from phosphogypsum and synthetic gypsum, J. Mater. Res. Technol., 8(2019), No. 3, p. 2586. doi: 10.1016/j.jmrt.2019.02.013
|
[71] |
H. Essabir, S. Nekhlaoui, M.O. Bensalah, D. Rodrigue, R. Bouhfid, and A.E.K. Qaiss, Phosphogypsum waste used as reinforcing fillers in polypropylene based composites: Structural, mechanical and thermal properties, J. Polym. Environ., 25(2017), No. 3, p. 658. doi: 10.1007/s10924-016-0853-9
|
[72] |
S. El Issiouy, A. Atbir, S. Mançour-Billah, R. Bellajrou, L. Boukbir, and M. El Hadek, Thermal treatment of Moroccan phosphogypsum, MATEC Web Conf., 3(2013), art. No. 01030. doi: 10.1051/matecconf/20130301030
|
[73] |
M.A. Taher, Influence of thermally treated phosphogypsum on the properties of Portland slag cement, Resour. Conserv. Recycl., 52(2007), No. 1, p. 28. doi: 10.1016/j.resconrec.2007.01.008
|
[74] |
H. El-Didamony, H.S. Gado, N.S. Awwad, M.M. Fawzy, and M.F. Attallah, Treatment of phosphogypsum waste produced from phosphate ore processing, J. Hazard. Mater., 244-245(2013), p. 596. doi: 10.1016/j.jhazmat.2012.10.053
|
[75] |
M. Contreras, R. Pérez-López, M.J. Gázquez, et al., Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO2 sequestration, Waste Manage., 45(2015), p. 412. doi: 10.1016/j.wasman.2015.06.046
|
[76] |
M.I. Romero-Hermida, A.M. Borrero-López, F.J. Alejandre, et al., Phosphogypsum waste lime as a promising substitute of commercial limes: A rheological approach, Cem. Concr. Compos., 95(2019), p. 205. doi: 10.1016/j.cemconcomp.2018.11.007
|
[77] |
C. Cárdenas-Escudero, V. Morales-Flórez, R. Pérez-López, A. Santos, and L. Esquivias, Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration, J. Hazard. Mater., 196(2011), p. 431. doi: 10.1016/j.jhazmat.2011.09.039
|
[78] |
I. Romero-Hermida, A. Santos, R. Pérez-López, R. García-Tenorio, L. Esquivias, and V. Morales-Flórez, New method for carbon dioxide mineralization based on phosphogypsum and aluminium-rich industrial wastes resulting in valuable carbonated by-products, J. CO2 Util., 18(2017), p. 15.
|
[79] |
F.A. López, M. Gázquez, F.J. Alguacil, J.P. Bolívar, I. García-Díaz, and I. López-Coto, Microencapsulation of phosphogypsum into a sulfur polymer matrix: Physico-chemical and radiological characterization, J. Hazard. Mater., 192(2011), No. 1, p. 234.
|
[80] |
M.I. Romero-Hermida, A.M. Borrero-López, V. Flores-Alés, et al., Characterization and analysis of the carbonation process of a lime mortar obtained from phosphogypsum waste, Int. J. Environ. Res. Public Health, 18(2021), No. 12, art. No. 6664. doi: 10.3390/ijerph18126664
|
[81] |
J.L. Guerrero, S.M. Pérez-Moreno, F. Mosqueda, M.J. Gázquez, and J.P. Bolívar, Radiological and physico-chemical characterization of materials from phosphoric acid production plant to assess the workers radiological risks, Chemosphere, 253(2020), art. No. 126682. doi: 10.1016/j.chemosphere.2020.126682
|
[82] |
X. Li, G.Y. Zhu, X.K. Gong, S.P. Li, W. Xu, and H.Q. Li, Occurrence of the impurities in phosphorus rock and the research of acidolysis process, Spectrosc. Spectral Anal., 39(2019), No. 4, p. 1288. doi: 10.3964/j.issn.1000-0593(2019)04-1288-06
|
[83] |
A.Z M. Abouzeid, Physical and thermal treatment of phosphate ores—An overview, Int. J. Miner. Process., 85(2008), No. 4, p. 59. doi: 10.1016/j.minpro.2007.09.001
|
[84] |
W. Xu, B. Shi, Y. Tian, et al., Process mineralogy characteristics and flotation application of a refractory collophanite from Guizhou, China, Minerals, 11(2021), No. 11, art. No. 1249. doi: 10.3390/min11111249
|
[85] |
Z. Li, F.W. Wang, T.S. Bai, et al., Lead immobilization by geological fluorapatite and fungus Aspergillus niger, J. Hazard. Mater, 320(2016), . 386. doi: 10.1016/j.jhazmat.2016.08.051
|
[86] |
C. Ren, Y.F. Li, Q. Zhou, and W. Li, Phosphate uptake by calcite: Constraints of concentration and pH on the formation of calcium phosphate precipitates, Chem. Geol., 579(2021), art. No. 120365. doi: 10.1016/j.chemgeo.2021.120365
|
[87] |
A. Rubio-Ordóñez, O. García-Moreno, L.M.R. Terente, J. García-Guinea, and L. Tormo, Chondrite shock metamorphism history assessed by non-destructive analyses on Ca-phosphates and feldspars in the cangas de onís regolith breccia, Minerals, 9(2019), No. 7, art. No. 417. doi: 10.3390/min9070417
|
[88] |
Y.K. Liu, Q.S. Chen, M.C. Dalconi, et al., Enhancing the sustainable immobilization of phosphogypsum by cemented paste backfill with the activation of γ-Al2O3, Constr. Build. Mater., 347(2022), art. No. 128624. doi: 10.1016/j.conbuildmat.2022.128624
|
[89] |
Y.B. Jiang, K.D. Kwon, S.F. Wang, C. Ren, and W. Li, Molecular speciation of phosphorus in phosphogypsum waste by solid-state nuclear magnetic resonance spectroscopy, Sci. Total Environ., 696(2019), art. No. 133958. doi: 10.1016/j.scitotenv.2019.133958
|
[90] |
S.F. Cui, Y.Z. Fu, B.Q. Zhou, et al., Transfer characteristic of fluorine from atmospheric dry deposition, fertilizers, pesticides, and phosphogypsum into soil, Chemosphere, 278(2021), art. No. 130432. doi: 10.1016/j.chemosphere.2021.130432
|
[91] |
J.C. Xiang, J.P. Qiu, P.K. Zheng, X.G. Sun, Y.L. Zhao, and X.W. Gu, Usage of biowashing to remove impurities and heavy metals in raw phosphogypsum and calcined phosphogypsum for cement paste preparation, Chem. Eng. J., 451(2023), art. No. 138594. doi: 10.1016/j.cej.2022.138594
|
[92] |
X.B. Li and Q. Zhang, Dehydration behaviour and impurity change of phosphogypsum during calcination, Constr. Build. Mater., 311(2021), art. No. 125328. doi: 10.1016/j.conbuildmat.2021.125328
|
[93] |
Y. Ennaciri, I. Zdah, H. El Alaoui-Belghiti, and M. Bettach, Characterization and purification of waste phosphogypsum to make it suitable for use in the plaster and the cement industry, Chem. Eng. Commun., 207(2020), No. 3, p. 382. doi: 10.1080/00986445.2019.1599865
|
[94] |
M. Tafu and T. Chohji, Reaction between calcium phosphate and fluoride in phosphogypsum, J. Eur. Ceram. Soc., 26(2006), No. 4-5, p. 767. doi: 10.1016/j.jeurceramsoc.2005.06.031
|
[95] |
Q.S. Chen, Y.B. Tao, Y. Feng, Q.L. Zhang, and Y.K. Liu, Utilization of modified copper slag activated by Na2SO4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill, J. Environ. Manage., 290(2021), art. No. 112608. doi: 10.1016/j.jenvman.2021.112608
|
[96] |
J.F. Wang, J.G. Chen, C. Dallimore, H.Q. Yang, and Z.H. Dai, Spatial distribution, fractions, and potential release of sediment phosphorus in the Hongfeng Reservoir, southwest China, Lake Reservoir Manage., 31(2015), p. 214. doi: 10.1080/10402381.2015.1062835
|
[97] |
S.J. Cronin, V. Manoharan, M.J. Hedley, and P. Loganathan, Fluoride: A review of its fate, bioavailability, and risks of fluorosis in grazed-pasture systems in New Zealand, N Z J. Agric. Res., 43(2000), No. 3, p. 295. doi: 10.1080/00288233.2000.9513430
|
[98] |
J. An, H.A. Lee, J. Lee, and H.O. Yoon, Fluorine distribution in soil in the vicinity of an accidental spillage of hydrofluoric acid in Korea, Chemosphere, 119(2015), p. 577. doi: 10.1016/j.chemosphere.2014.07.043
|
[99] |
S. Wu, X.L. Yao, Y.G. Yao, et al., Recycling phosphogypsum as the sole calcium oxide source in calcium sulfoaluminate cement production and solidification of phosphorus, Sci. Total Environ., 808(2022), art. No. 152118. doi: 10.1016/j.scitotenv.2021.152118
|
[100] |
E. Álvarez-Ayuso, A. Giménez, and J.C. Ballesteros, Fluoride accumulation by plants grown in acid soils amended with flue gas desulphurisation gypsum, J. Hazard. Mater., 192(2011), No. 3, p. 1659. doi: 10.1016/j.jhazmat.2011.06.084
|
[101] |
K. Rai, M. Agarwal, S. Dass, and R. Shrivastav, Fluoride: Diffusive mobility in soil and some remedial measures to control its plant uptake, Curr. Sci., 79(2000), p. 1370.
|
[102] |
C.Y. Peng, X.F. Xu, Y.F. Ren, et al., Fluoride absorption, transportation and tolerance mechanism in Camellia sinensis, and its bioavailability and health risk assessment: A systematic review, J. Sci. Food Agric., 101(2021), No. 2, p. 379. doi: 10.1002/jsfa.10640
|
[103] |
L. Al Attar, M. Al-Oudat, K. Shamali, B. Abdul Ghany, and S. Kanakri, Case study: Heavy metals and fluoride contents in the materials of Syrian phosphate industry and in the vicinity of phosphogypsum piles, Environ. Technol., 33(2012), No. 2, p. 143. doi: 10.1080/09593330.2011.552531
|
[104] |
N. Makete, M. Rizzu, G. Seddaiu, L. Gohole, and A. Otinga, Fluoride toxicity in cropping systems: Mitigation, adaptation strategies and related mechanisms. A review, Sci. Total Environ., 833(2022), art. No. 155129. doi: 10.1016/j.scitotenv.2022.155129
|
[105] |
A. El Kateb, C. Stalder, A. Rüggeberg, C. Neururer, J.E. Spangenberg, and S. Spezzaferri, Impact of industrial phosphate waste discharge on the marine environment in the Gulf of Gabes (Tunisia), PLoS One, 13(2018), No. 5, art. No. e0197731. doi: 10.1371/journal.pone.0197731
|
[106] |
M.P. Hébert, V. Fugère, and A. Gonzalez, The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds, Front. Ecol. Environ., 17(2019), No. 1, p. 48. doi: 10.1002/fee.1985
|
[107] |
Y. Feng, Q.X. Yang, Q.S. Chen, et al., Characterization and evaluation of the pozzolanic activity of granulated copper slag modified with CaO, J. Clean. Prod., 232(2019), p. 1112. doi: 10.1016/j.jclepro.2019.06.062
|
[108] |
Z.B. Guo, J.P. Qiu, H.Q. Jiang, S.Y. Zhang, and H.X. Ding, Improving the performance of superfine-tailings cemented paste backfill with a new blended binder, Powder Technol., 394(2021), p. 149. doi: 10.1016/j.powtec.2021.08.029
|
[109] |
K. Dooley, Z. Nicholls, and M. Meinshausen, Carbon removals from nature restoration are no substitute for steep emission reductions, One Earth, 5(2022), No. 7, p. 812. doi: 10.1016/j.oneear.2022.06.002
|
[110] |
F.H. Wu, Y.C. Ren, G.F. Qu, et al., Utilization path of bulk industrial solid waste: A review on the multi-directional resource utilization path of phosphogypsum, J. Environ. Manage., 313(2022), art. No. 114957. doi: 10.1016/j.jenvman.2022.114957
|
[111] |
S.F. Lütke, M.L.S. Oliveira, L.F.O. Silva, T.R.S. Cadaval, and G.L. Dotto, Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry, Chemosphere, 256(2020), art. No. 127138. doi: 10.1016/j.chemosphere.2020.127138
|
[112] |
M. Walawalkar, C.K. Nichol, and G. Azimi, Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4, Hydrometallurgy, 166(2016), p. 195. doi: 10.1016/j.hydromet.2016.06.008
|
[113] |
Z.Y. Ou, J.H. Li, and Z.S. Wang, Application of mechanochemistry to metal recovery from second-hand resources: A technical overview, Environ. Sci. Processes Impacts, 17(2015), No. 9, p. 1522. doi: 10.1039/C5EM00211G
|
[114] |
S.C. Li, M. Malik, and G. Azimi, Extraction of rare earth elements from phosphogypsum using mineral acids: Process development and mechanistic investigation, Ind. Eng. Chem. Res., 61(2022), No. 1, p. 102. doi: 10.1021/acs.iecr.1c03576
|
[115] |
B.R.S. Calderón-Morales, A. García-Martínez, P. Pineda, and R. García-Tenório, Valorization of phosphogypsum in cement-based materials: Limits and potential in eco-efficient construction, J. Build. Eng., 44(2021), art. No. 102506. doi: 10.1016/j.jobe.2021.102506
|
[116] |
Y.B. Huang, J.S. Qian, C.Z. Liu, et al., Influence of phosphorus impurities on the performances of calcium sulfoaluminate cement, Constr. Build. Mater., 149(2017), p. 37. doi: 10.1016/j.conbuildmat.2017.05.028
|
[117] |
A.M. Rashad, Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles, J. Clean. Prod., 87(2015), p. 717. doi: 10.1016/j.jclepro.2014.09.080
|
[118] |
M. Amrani, Y. Taha, A. Kchikach, M. Benzaazoua, and R. Hakkou, Phosphogypsum recycling: New horizons for a more sustainable road material application, J. Build. Eng., 30(2020), art. No. 101267. doi: 10.1016/j.jobe.2020.101267
|
[119] |
H.H. Qi, B.G. Ma, H.B. Tan, Y. Su, W.D. Lu, and Z.H. Jin, Influence of fluoride ion on the performance of PCE in hemihydrate gypsum pastes, J. Build. Eng., 46(2022), art. No. 103582. doi: 10.1016/j.jobe.2021.103582
|
[120] |
T. Tian, Y. Yan, Z.H. Hu, Y.Y. Xu, Y.P. Chen, and J. Shi, Utilization of original phosphogypsum for the preparation of foam concrete, Constr. Build. Mater., 115(2016), p. 143. doi: 10.1016/j.conbuildmat.2016.04.028
|
[121] |
R.P. Costa, M.H.G. de Medeiros, E.D. Rodriguez Martinez, V.A. Quarcioni, S. Suzuki, and A.P. Kirchheim, Effect of soluble phosphate, fluoride, and pH in Brazilian phosphogypsum used as setting retarder on Portland cement hydration, Case Stud. Constr. Mater., 17(2022), art. No. e01413.
|
[122] |
R. Zhu, C.W. Ye, H. Xiang, et al., Study on the material characteristics and barrier mechanism of magnesium potassium phosphate cement/hydroxyapatite cutoff walls for fluoride contamination in phosphogypsum waste stacks, Constr. Build. Mater., 347(2022), art. No. 128469. doi: 10.1016/j.conbuildmat.2022.128469
|
[123] |
V.A. Matveeva, Y.D. Smirnov, and D.V. Suchkov, Industrial processing of phosphogypsum into organomineral fertilizer, Environ. Geochem. Health, 44(2022), No. 5, p. 1605. doi: 10.1007/s10653-021-00988-x
|
[124] |
X. Peng, Y.E. Deng, L. Liu, et al., The addition of biochar as a fertilizer supplement for the attenuation of potentially toxic elements in phosphogypsum-amended soil, J. Clean. Prod., 277(2020), art. No. 124052. doi: 10.1016/j.jclepro.2020.124052
|
[125] |
M.B. Outbakat, K. El Mejahed, M. El Gharous, K. El Omari, and A. Beniaich, Effect of phosphogypsum on soil physical properties in Moroccan salt-affected soils, Sustainability, 14(2022), No. 20, art. No. 13087. doi: 10.3390/su142013087
|
[126] |
J. Qi, H. Zhu, P. Zhou, et al., Application of phosphogypsum in soilization: A review, Int. J. Environ. Sci. Technol., 20(2023), No. 9, p. 10449. doi: 10.1007/s13762-023-04783-2
|
[127] |
A.K. Nayak, V.K. Mishra, D.K. Sharma, et al., Efficiency of phosphogypsum and mined gypsum in reclamation and productivity of rice–wheat cropping system in sodic soil, Commun. Soil Sci. Plant Anal., 44(2013), No. 5, p. 909. doi: 10.1080/00103624.2012.747601
|
[128] |
J. McL. Bennett, S.R. Cattle, and B. Singh, The efficacy of lime, gypsum and their combination to ameliorate sodicity in irrigated cropping soils in the Lachlan valley of new South Wales, Arid Land Res. Manage., 29(2015), No. 1, p. 17. doi: 10.1080/15324982.2014.940432
|
[129] |
G. Lofrano, G. Libralato, D. Minetto, et al. , In situ remediation of contaminated marinesediment: An overview, Environ. Sci. Pollut. Res. Int., 24(2017), No. 6, p. 5189. doi: 10.1007/s11356-016-8281-x
|
[130] |
Q.Y. Chen, M. Tyrer, C.D. Hills, X.M. Yang, and P. Carey, Immobilisation of heavy metal in cement-based solidification/stabilisation: A review, Waste Manage., 29(2009), No. 1, p. 390. doi: 10.1016/j.wasman.2008.01.019
|
[131] |
B. Guo, B. Liu, J. Yang, and S.G. Zhang, The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review, J. Environ. Manage., 193(2017), p. 410. doi: 10.1016/j.jenvman.2017.02.026
|
[132] |
Y. Wang, Z.Q. Wang, A.X. Wu, et al., Experimental research and numerical simulation of the multi-field performance of cemented paste backfill: Review and future perspectives, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 193. doi: 10.1007/s12613-022-2537-x
|
[133] |
Q.S. Chen, Q. Zhang, Y.M. Wang, Q.L. Zhang, and Y.K. Liu, Highly-efficient fluoride retention in on-site solidification/stabilization of phosphogypsum: Cemented paste backfill synergizes with poly-aluminum chloride activation, Chemosphere, 309(2022), art. No. 136652. doi: 10.1016/j.chemosphere.2022.136652
|
[134] |
X.L. Xue, Y.X. Ke, Q. Kang, et al., Cost-effective treatment of hemihydrate phosphogypsum and phosphorous slag as cemented paste backfill material for underground mine, Adv. Mater. Sci. Eng., 2019(2019), art. No. 9087538.
|
[135] |
H.F. Liu, J.X. Zhang, B.Y. Li, et al., Long term leaching behavior of arsenic from cemented paste backfill made of construction and demolition waste: Experimental and numerical simulation studies, J. Hazard. Mater., 416(2021), art. No. 125813. doi: 10.1016/j.jhazmat.2021.125813
|
[136] |
E. Yilmaz, T. Belem, and M. Benzaazoua, Effects of curing and stress conditions on hydromechanical, geotechnical and geochemical properties of cemented paste backfill, Eng. Geol., 168(2014), p. 23. doi: 10.1016/j.enggeo.2013.10.024
|
[137] |
Y.K. Liu, Q.S. Chen, Y.M. Wang, et al. , In situ remediation of phosphogypsum with water-washing pre-treatment using cemented paste backfill: Rheology behavior and damage evolution, Materials, 14(2021), No. 22, art. No. 6993. doi: 10.3390/ma14226993
|
[138] |
X.B. Li, Y.N. Zhou, Y. Shi, and Q.Q. Zhu, Fluoride immobilization and release in cemented PG backfill and its influence on the environment, Sci. Total Environ., 869(2023), art. No. 161548. doi: 10.1016/j.scitotenv.2023.161548
|
[139] |
Q.S. Chen, H.L. Zhou, Y.M. Wang, D.L. Wang, Q.L. Zhang, and Y.K. Liu, Erosion wear at the bend of pipe during tailings slurry transportation: Numerical study considering inlet velocity, particle size and bend angle, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1608. doi: 10.1007/s12613-023-2672-z
|
[140] |
Y.K. Liu, P.S. Wang, M.C. Dalconi, et al., The sponge effect of phosphogypsum-based cemented paste backfill in the atmospheric carbon capture: Roles of fluorides, phosphates, and alkalinity, Sep. Purif. Technol., 315(2023), art. No. 123702. doi: 10.1016/j.seppur.2023.123702
|
[141] |
H.B. Tan, F.B. Zou, M. Liu, B.G. Ma, Y.L. Guo, and S.W. Jian, Effect of the adsorbing behavior of phosphate retarders on hydration of cement paste, J. Mater. Civ. Eng., 29(2017), No. 9, art. No. 04017088. doi: 10.1061/(ASCE)MT.1943-5533.0001929
|
[142] |
R.J. Wu and J.C. Liu, Removal of phosphate using ettringite synthesized from industrial by-products, Water Air Soil Pollut., 229(2018), No. 6, art. No. 185. doi: 10.1007/s11270-018-3828-8
|
[143] |
A.F.S. Gomes, D.L. Lopez, and A.C.Q. Ladeira, Characterization and assessment of chemical modifications of metal-bearing sludges arising from unsuitable disposal, J. Hazard. Mater., 199-200(2012), p. 418. doi: 10.1016/j.jhazmat.2011.11.039
|
[144] |
J.Y. Park, H.J. Byun, W.H. Choi, and W.H. Kang, Cement paste column for simultaneous removal of fluoride, phosphate, and nitrate in acidic wastewater, Chemosphere, 70(2008), No. 8, p. 1429. doi: 10.1016/j.chemosphere.2007.09.012
|
[145] |
L. Wang, K.Q. Yu, J.S. Li, et al., Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil, Chem. Eng. J., 351(2018), p. 418. doi: 10.1016/j.cej.2018.06.118
|
[146] |
M. Zavarin, E. Chang, H. Wainwright, et al., Community data mining approach for surface complexation database development, Environ. Sci. Technol., 56(2022), No. 4, p. 2827. doi: 10.1021/acs.est.1c07109
|
[147] |
J. Helser and V. Cappuyns, Trace elements leaching from PbZn mine waste (Plombières, Belgium) and environmental implications, J. Geochem. Explor., 220(2021), art. No. 106659. doi: 10.1016/j.gexplo.2020.106659
|
[148] |
J.J. Dijkstra, R.N.J. Comans, J. Schokker, and M.J. van der Meulen, The geological significance of novel anthropogenic materials: Deposits of industrial waste and by-products, Anthropocene, 28(2019), art. No. 100229. doi: 10.1016/j.ancene.2019.100229
|
[149] |
Y. Liu, S. Molinari, M.C. Dalconi, et al., Mechanistic insights into Pb and sulfates retention in ordinary Portland cement and aluminous cement: Assessing the contributions from binders and solid waste, J. Hazard. Mater., 458(2023), art. No. 131849. doi: 10.1016/j.jhazmat.2023.131849
|
[150] |
H. Ölmez and E. Erdem, The effects of phosphogypsum on the setting and mechanical properties of Portland cement and trass cement, Cem. Concr. Res., 19(1989), No. 3, p. 377. doi: 10.1016/0008-8846(89)90027-6
|
[151] |
M. Singh, M. Garg, and S.S. Rehsi, Purifying phosphogypsum for cement manufacture, Constr. Build. Mater., 7(1993), No. 1, p. 3. doi: 10.1016/0950-0618(93)90018-8
|
[152] |
M.S. Al-Hwaiti, Assessment of the radiological impacts of treated phosphogypsum used as the main constituent of building materials in Jordan, Environ. Earth Sci., 74(2015), No. 4, p. 3159. doi: 10.1007/s12665-015-4354-2
|
[153] |
M. Singh, M. Garg, C.L. Verma, S.K. Handa, and R. Kumar, An improved process for the purification of phosphogypsum, Constr. Build. Mater., 10(1996), No. 8, p. 597. doi: 10.1016/S0950-0618(96)00019-0
|
[154] |
M.M. Smadi, R.H. Haddad, and A.M. Akour, Potential use of phosphogypsum in concrete, Cem. Concr. Res., 29(1999), No. 9, p. 1419. doi: 10.1016/S0008-8846(99)00107-6
|
[155] |
A. Mohan and K.M. Mini, Strength and durability studies of SCC incorporating silica fume and ultra fine GGBS, Constr. Build. Mater., 171(2018), p. 919. doi: 10.1016/j.conbuildmat.2018.03.186
|
[156] |
X. Huang, J.S. Li, W.H. Jiang, et al., Recycling of phosphogypsum and red mud in low carbon and green cementitious materials for vertical barrier, Sci. Total Environ., 838(2022), art. No. 155925. doi: 10.1016/j.scitotenv.2022.155925
|
[157] |
Q.S. Chen, P.S. Wang, Y.M. Wang, et al., Fluorides immobilization through calcium aluminate cement-based backfill: Accessing the detailed leaching characterization under torrential rainfall, Environ. Res., 238(2023), art. No. 117229. doi: 10.1016/j.envres.2023.117229
|
[158] |
I.H. Shah, S.A. Miller, D. Jiang, and R.J. Myers, Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons, Nat. Commun., 13(2022), No. 1, art. No. 5758. doi: 10.1038/s41467-022-33289-7
|
[159] |
S.A. Miller, G. Habert, R.J. Myers, and J.T. Harvey, Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies, One Earth, 4(2021), No. 10, p. 1398. doi: 10.1016/j.oneear.2021.09.011
|
[160] |
G. Habert, S.A. Miller, V.M. John, et al., Environmental impacts and decarbonization strategies in the cement and concrete industries, Nat. Rev. Earth Environ., 1(2020), p. 559. doi: 10.1038/s43017-020-0093-3
|
[161] |
J.Y. Wu, H.W. Jing, Y. Gao, Q.B. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cem. Concr. Compos., 127(2022), art. No. 104408. doi: 10.1016/j.cemconcomp.2022.104408
|
[162] |
K. de Kleijne, S.V. Hanssen, L. van Dinteren, M.A.J. Huijbregts, R. van Zelm, and H. de Coninck, Limits to Paris compatibility of CO2 capture and utilization, One Earth, 5(2022), No. 2, p. 168. doi: 10.1016/j.oneear.2022.01.006
|
[163] |
F. Wang, J.D. Harindintwali, Z. Yuan, et al., Technologies and perspectives for achieving carbon neutrality, The Innovation, 2(2021), No. 4.
|
[164] |
Z. Liu, Z. Deng, G. He, et al., Challenges and opportunities for carbon neutrality in China, Nat. Rev. Earth Environ., 3(2021), No. 2, p. 141. doi: 10.1038/s43017-021-00244-x
|
[165] |
H.G. Nie, R. Kemp, and Y. Fan, Investigating the adoption of energy-saving measures in residential sector: The contribution to carbon neutrality of China and Europe, Resour. Conserv. Recycl., 190(2023), art. No. 106791. doi: 10.1016/j.resconrec.2022.106791
|
[166] |
L. Wang, L. Chen, D.C.W. Tsang, et al., Biochar as green additives in cement-based composites with carbon dioxide curing, J. Clean. Prod., 258(2020), art. No. 120678. doi: 10.1016/j.jclepro.2020.120678
|
[167] |
D.L. Wang, M.L. Chen, and D.C.W. Tsang, Green remediation by using low-carbon cement-based stabilization/solidification approaches, [in] D.Y. Hou, ed., Sustainable Remediation of Contaminated Soil and Groundwater, Elsevier, Amsterdam, 2020, p. 93.
|
[168] |
Y. Huang and Z.S. Lin, Investigation on phosphogypsum–steel slag–granulated blast-furnace slag–limestone cement, Constr. Build. Mater., 24(2010), No. 7, p. 1296. doi: 10.1016/j.conbuildmat.2009.12.006
|
[169] |
C.D. Min, Y. Shi, and Z.X. Liu, Properties of cemented phosphogypsum (PG) backfill in case of partially substitution of composite Portland cement by ground granulated blast furnace slag, Constr. Build. Mater., 305(2021), art. No. 124786. doi: 10.1016/j.conbuildmat.2021.124786
|
[170] |
Z.Y. Wang, Z.H. Shui, T. Sun, X.S. Li, and M.Z. Zhang, Recycling utilization of phosphogypsum in eco excess-sulphate cement: Synergistic effects of metakaolin and slag additives on hydration, strength and microstructure, J. Clean. Prod., 358(2022), art. No. 131901. doi: 10.1016/j.jclepro.2022.131901
|
[171] |
L. Chen, Y.S. Wang, L. Wang, et al., Stabilisation/solidification of municipal solid waste incineration fly ash by phosphate-enhanced calcium aluminate cement, J. Hazard. Mater., 408(2021), art. No. 124404. doi: 10.1016/j.jhazmat.2020.124404
|
[172] |
Y. Feng, Q.S. Chen, Y.L. Zhou, et al., Modification of glass structure via CaO addition in granulated copper slag to enhance its pozzolanic activity, Constr. Build. Mater., 240(2020), art. No. 117970. doi: 10.1016/j.conbuildmat.2019.117970
|
[173] |
J. Skocek, M. Zajac, and M. Ben Haha, Carbon Capture and Utilization by mineralization of cement pastes derived from recycled concrete, Sci. Rep., 10(2020), No. 1, art. No. 5614. doi: 10.1038/s41598-020-62503-z
|
[174] |
J.C. Li, J. Chang, T. Wang, T. Zeng, J.Y. Li, and J.X. Zhang, Effects of phosphogypsum on hydration properties and strength of calcium aluminate cement, Constr. Build. Mater., 347(2022), art. No. 128398. doi: 10.1016/j.conbuildmat.2022.128398
|
[175] |
T. Watari, Z. Cao, S. Hata, and K. Nansai, Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions, Nat. Commun., 13(2022), No. 1, art. No. 4158. doi: 10.1038/s41467-022-31806-2
|
[176] |
J. James, C. Arthi, G. Balaji, N. Chandraleka, and R.H.M. Naveen Kumar, Lime activated flyash-phosphogypsum blend as a low-cost alternative binder, Int. J. Environ. Sci. Technol., 19(2022), No. 9, p. 8969. doi: 10.1007/s13762-021-03618-2
|
[177] |
J. Matsimbe, M. Dinka, D. Olukanni, and I. Musonda, Geopolymer: A systematic review of methodologies, Materials, 15(2022), No. 19, art. No. 6852. doi: 10.3390/ma15196852
|
[178] |
S. Contessi, L. Calgaro, M.C. Dalconi, et al., Stabilization of lead contaminated soil with traditional and alternative binders, J. Hazard. Mater., 382(2020), art. No. 120990. doi: 10.1016/j.jhazmat.2019.120990
|
[179] |
S.D. Hua, K.J. Wang, X. Yao, W. Xu, and Y.X. He, Effects of fibers on mechanical properties and freeze-thaw resistance of phosphogypsum-slag based cementitious materials, Constr. Build. Mater., 121(2016), p. 290. doi: 10.1016/j.conbuildmat.2016.06.003
|
[180] |
S.Y. Pan, Y.H. Chen, L.S. Fan, et al., CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction, Nat. Sustain., 3(2020), p. 399. doi: 10.1038/s41893-020-0486-9
|
[181] |
S.Ó. Snæbjörnsdóttir, B. Sigfússon, C. Marieni, D. Goldberg, S.R. Gislason, and E.H. Oelkers, Carbon dioxide storage through mineral carbonation, Nat. Rev. Earth Environ., 1(2020), No. 2, p. 90. doi: 10.1038/s43017-019-0011-8
|