Cite this article as: |
Zongan Luo, Xin Zhang, Zhaosong Liu, Hongyu Zhou, Mingkun Wang, and Guangming Xie, Mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hot-roll bonding, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1890-1899. https://doi.org/10.1007/s12613-023-2801-8 |
张新 E-mail: zx2017neu@163.com
[1] |
T.S. Liu, F. Qiu, H.Y. Yang, et al., Insights into the influences of nanoparticles on microstructure evolution mechanism and mechanical properties of friction-stir-welded Al6061 alloys, Mater. Sci. Eng. A, 871(2023), art. No. 144929. doi: 10.1016/j.msea.2023.144929
|
[2] |
C. Peng, G.W. Cao, T.Z. Gu, C. Wang, Z.Y. Wang, and C. Sun, The corrosion behavior of the 6061 Al alloy in simulated Nansha marine atmosphere, J. Mater. Res. Technol., 19(2022), p. 709. doi: 10.1016/j.jmrt.2022.05.066
|
[3] |
F.B. Meng, H.J. Huang, X.G. Yuan, X.J. Lin, Z.W. Cui, and X.L. Hu, Segregation in squeeze casting 6061 aluminum alloy wheel spokes and its formation mechanism, China Foundry, 18(2021), No. 1, p. 45. doi: 10.1007/s41230-021-0079-x
|
[4] |
Y. Li, H.X. Li, L. Katgerman, Q. Du, J.S. Zhang, and L.Z. Zhuang, Recent advances in hot tearing during casting of aluminium alloys, Prog. Mater. Sci., 117(2021), art. No. 100741. doi: 10.1016/j.pmatsci.2020.100741
|
[5] |
M. Jolly and L. Katgerman, Modelling of defects in aluminium cast products, Prog. Mater. Sci., 123(2022), art. No. 100824. doi: 10.1016/j.pmatsci.2021.100824
|
[6] |
P.J. Hao, A.R. He, and W.Q. Sun, Formation mechanism and control methods of inhomogeneous deformation during hot rough rolling of aluminum alloy plate, Arch. Civ. Mech. Eng., 18(2018), No. 1, p. 245. doi: 10.1016/j.acme.2017.07.004
|
[7] |
T.T. Zhang, W.X. Wang, J. Zhang, and Z.F. Yan, Interfacial bonding characteristics and mechanical properties of H68/AZ31B clad plate, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1237. doi: 10.1007/s12613-020-2240-8
|
[8] |
X. Han, H.T. Zhang, B. Shao, L. Li, K. Qin, and J.Z. Cui, Interfacial characteristics and properties of a low-clad-ratio AA4045/AA3003 cladding billet fabricated by semi-continuous casting, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1097. doi: 10.1007/s12613-016-1327-8
|
[9] |
B.J. Xie, M.Y. Sun, B. Xu, C.Y. Wang, D.Z. Li, and Y.Y. Li, Dissolution and evolution of interfacial oxides improving the mechanical properties of solid state bonding joints, Mater. Des., 157(2018), p. 437. doi: 10.1016/j.matdes.2018.08.003
|
[10] |
B.J. Xie, M.Y. Sun, B. Xu, et al., Evolution of interfacial characteristics and mechanical properties for 316LN stainless steel joints manufactured by hot-compression bonding, J. Mater. Process. Technol., 283(2020), art. No. 116733. doi: 10.1016/j.jmatprotec.2020.116733
|
[11] |
G.M. Xie, Z.A. Luo, H.G. Wang, G.D. Wang, and L.J. Wang, Microstructure and mechanical properties of heavy gauge plate by vacuum cladding rolling, Adv. Mater. Res., 97-101(2010), p. 324.
|
[12] |
R.P. Jiang, W.H. Zhao, L. Zhang, X.Q. Li, and S.K. Guan, Microstructure and corrosion resistance of commercial purity aluminum sheet manufactured by continuous casting direct rolling after ultrasonic melt pre-treatment, J. Mater. Res. Technol., 22(2023), p. 1522. doi: 10.1016/j.jmrt.2022.12.025
|
[13] |
P.K. Penumakala, A.K. Nallathambi, E. Specht, U. Urlau, D. Hamilton, and C. Dykes, Influence of process parameters on solidification length of twin-belt continuous casting, Appl. Therm. Eng., 134(2018), p. 275. doi: 10.1016/j.applthermaleng.2018.01.121
|
[14] |
J.R. Zhao, F.Y. Hung, and B.J. Chen, Effects of heat treatment on a novel continuous casting direct rolling 6056 aluminum alloy: cold rolling characteristics and tensile fracture properties, J. Mater. Res. Technol., 11(2021), p. 535. doi: 10.1016/j.jmrt.2021.01.037
|
[15] |
M. Akbarifar, M. Divandari, S.M. A. Boutorabi, S.H. Ha, Y.O. Yoon, and S.K. Kim, Short-time oxidation of Al–Mg in dynamic conditions, Oxid. Met., 94(2020), No. 5, p. 409.
|
[16] |
W.S. Tang, X.Q. Yang, C.B. Tian, and Y.S. Xu, Microstructural heterogeneity and bonding strength of planar interface formed in additive manufacturing of Al−Mg−Si alloy based on friction and extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1755. doi: 10.1007/s12613-022-2506-4
|
[17] |
G.Q. Chen, J.P. Liu, H.Z. Wang, Z.B. Dong, X. Shu, and B.G. Zhang, Underlying cause of the performance deteriorates of Al–Cu–Mg alloy via electron-beam welding and the mechanism of ultrasonic modification, Sci. Technol. Weld. Joining, 25(2020), No. 8, p. 653. doi: 10.1080/13621718.2020.1798095
|
[18] |
D.Z. Xu, L.G. Meng, C.R. Zhang, X. Chen, and X.G. Zhang, Interface microstructure evolution and bonding mechanism during vacuum hot pressing bonding of 2A12 aluminum alloy, Mater. Charact., 189(2022), art. No. 111997. doi: 10.1016/j.matchar.2022.111997
|
[19] |
X. Zhang, Z.A. Luo, G.M. Xie, H. Yu, Z.S. Liu, and J.S. Yang, Interface microstructure and bonding mechanisms of 7050 aluminum alloy thick plates produced by vacuum roll cladding, Mater. Sci. Eng. A, 850(2022), art. No. 143582. doi: 10.1016/j.msea.2022.143582
|
[20] |
X. Xu, X.W. Ma, S.B. Yu, G.Q. Zhao, Y.X. Wang, and X.X. Chen, Bonding mechanism and mechanical properties of 2196 Al-Cu-Li alloy joined by hot compression deformation, Mater. Charact., 167(2020), art. No. 110486. doi: 10.1016/j.matchar.2020.110486
|
[21] |
J.Q. Yu, G.Q. Zhao, X.X. Chen, and M.C. Liang, A comparative study on hot deformation and solid-state bonding behavior of aluminum alloys for the integration of solid-state joining and forming processes, Int. J. Adv. Manuf. Technol., 104(2019), No. 9, p. 3849.
|
[22] |
X.M. Qian, Z.D. Wang, Y. Li, Y.F. Wang, and Y. Peng, Formation mechanism of β” -Mg5Si6 and its PFZ in an Al-Mg-Si-Mn alloy: Experiment and first-principles calculations, Mater. Charact., 197(2023), art. No. 112617. doi: 10.1016/j.matchar.2022.112617
|
[23] |
R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, and S.J. Andersen, The crystal structure of the β’ phase in Al–Mg–Si alloys, Acta Mater., 55(2007), No. 11, p. 3815. doi: 10.1016/j.actamat.2007.02.032
|
[24] |
H. Shishido, Y. Aruga, Y. Murata, C.D. Marioara, and O. Engler, Evaluation of precipitates and clusters during artificial aging of two model Al–Mg–Si alloys with different Mg/Si ratios, J. Alloys Compd., 927(2022), art. No. 166978. doi: 10.1016/j.jallcom.2022.166978
|
[25] |
S.J. Yao, Q.H. Tang, J. Yang, et al., Microstructural characterization and mechanical properties of 6061 aluminum alloy processed with short-time solid solution and aging treatment, J. Alloys Compd., 960(2023), art. No. 170704. doi: 10.1016/j.jallcom.2023.170704
|
[26] |
N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, Cambridge, 2006.
|
[27] |
X. Zhang, Z.A. Luo, Z.S. Liu, et al., Interfacial oxide evolution and mechanical properties of 7050 aluminum alloy clad plates during solution and aging process, Mater. Sci. Eng. A, 860(2022), art. No. 144310. doi: 10.1016/j.msea.2022.144310
|
[28] |
D. Labus Zlatanovic, S. Balos, J.P. Bergmann, et al., In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot welding, Int. J. Mach. Tools Manuf., 164(2021), art. No. 103716. doi: 10.1016/j.ijmachtools.2021.103716
|
[29] |
E. Panda, L.P.H. Jeurgens, and E.J. Mittemeijer, Effect of in vacuo surface pre-treatment on the growth kinetics and chemical constitution of ultra-thin oxide films on Al–Mg alloy substrates, Surf. Sci., 604(2010), No. 5-6, p. 588. doi: 10.1016/j.susc.2009.12.030
|
[30] |
D. Ajmera and E. Panda, Thermodynamics of ultra-thin oxide overgrowths on Al–Mg alloys: Role of interface energy, Corros. Sci., 102(2016), p. 425. doi: 10.1016/j.corsci.2015.10.035
|
[31] |
Y.C. Si, F. Zhang, X. Li, et al., Thermodynamic calculation and microstructure characterization of spinel formation in MgO–Al2O3–C refractories, Ceram. Int., 48(2022), No. 11, p. 15525. doi: 10.1016/j.ceramint.2022.02.086
|
[32] |
D. Labus Zlatanovic, J. Pierre Bergmann, S. Balos, J. Hildebrand, M. Bojanic-Sejat, and S. Goel, Effect of surface oxide layers in solid-state welding of aluminium alloys–review, Sci. Technol. Weld. Joining, 28(2023), No. 5, p. 331. doi: 10.1080/13621718.2023.2165603
|
[33] |
G.P. Dolan and J.S. Robinson, Residual stress reduction in 7175-T73, 6061-T6 and 2017A-T4 aluminium alloys using quench factor analysis, J. Mater. Process. Technol., 153-154(2004), p. 346. doi: 10.1016/j.jmatprotec.2004.04.065
|
[34] |
A.A. Nazarov, A.E. Romanov, and R.Z. Valiev, On the structure, stress fields and energy of nonequilibrium grain boundaries, Acta Metall. Mater., 41(1993), No. 4, p. 1033. doi: 10.1016/0956-7151(93)90152-I
|
[35] |
T. Fujita, Z. Horita, and T.G. Langdon, Characteristics of diffusion in Al-Mg alloys with ultrafine grain sizes, Philos. Mag. A, 82(2002), No. 11, p. 2249. doi: 10.1080/01418610208235736
|
[36] |
Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, and J.H. Chen, Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al–Mg–Si alloys, J. Mater. Sci. Technol., 41(2020), p. 127. doi: 10.1016/j.jmst.2019.11.001
|
[37] |
L.Y. Zhou, S.B. Feng, M.Y. Sun, B. Xu, and D.Z. Li, Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding, J. Mater. Sci. Technol., 35(2019), No. 8, p. 1671. doi: 10.1016/j.jmst.2019.04.005
|
[38] |
Y. Zhang, J.F. Jiang, Y. Wang, G.F. Xiao, Y.Z. Liu, and M.J. Huang, Recrystallization process of hot-extruded 6A02 aluminum alloy in solid and semi-solid temperature ranges, J. Alloys Compd., 893(2022), art. No. 162311. doi: 10.1016/j.jallcom.2021.162311
|
[39] |
J.C. Li, X.D. Wu, L.F. Cao, B. Liao, Y.C. Wang, and Q. Liu, Hot deformation and dynamic recrystallization in Al–Mg–Si alloy, Mater. Charact., 173(2021), art. No. 110976. doi: 10.1016/j.matchar.2021.110976
|
[40] |
J.Y. Zhang, B. Wang, and H. Wang, Geometrically necessary dislocations distribution in face-centred cubic alloy with varied grain size, Mater. Charact., 162(2020), art. No. 110205. doi: 10.1016/j.matchar.2020.110205
|
[41] |
C.Y. Zhu, T. Harrington, G.T. Gray, and K.S. Vecchio, Dislocation-type evolution in quasi-statically compressed polycrystalline nickel, Acta Mater., 155(2018), p. 104. doi: 10.1016/j.actamat.2018.05.022
|
[42] |
J.H. Zheng, C. Pruncu, K. Zhang, K.L. Zheng, and J. Jiang, Quantifying geometrically necessary dislocation density during hot deformation in AA6082 Al alloy, Mater. Sci. Eng. A, 814(2021), art. No. 141158. doi: 10.1016/j.msea.2021.141158
|
[43] |
A. Kedharnath, R. Kapoor, and A. Sarkar, Evolution of dislocations and grain boundaries during multi-axial forging of tantalum, Int. J. Refract. Met. Hard Mater, 112(2023), art. No. 106120. doi: 10.1016/j.ijrmhm.2023.106120
|
[44] |
Y.J. Gao, C.J. Lu, Z.R. Luo, K. Lin, and C.G. Huang, Phase field crystal simulation of dislocation emission and annihilation at grain boundary, Chin. J. Nonferrous Met., 24(2014), No. 8, p. 2073.
|
[45] |
B. Prasanna Nagasai, A. Ramaswamy, and J. Mani, Tensile properties and microstructure of surface tension transfer (STT) arc welded AA 6061-T6 aluminum alloy joints, Mater. Today Proc., 2023. https://doi.org/10.1016/j.matpr.2023.04.576
|
[46] |
A. Thakur, V. Sharma, N. Minhas, S. Manda, and V.S. Sharma, Microstructure and mechanical properties of dissimilar friction stir welded joints of laser powder bed fusion processed AlSi10Mg and conventional hot rolled 6061-T6 thin sheets, Opt. Laser Technol., 163(2023), art. No. 109382. doi: 10.1016/j.optlastec.2023.109382
|