留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(8)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  214
  • HTML全文浏览量:  92
  • PDF下载量:  23
  • 被引次数: 0
Haibo Feng, Shaohua Li, Kexiao Wang, Junheng Gao, Shuize Wang, Haitao Zhao, Zhenyu Han, Yong Deng, Yuhe Huang, and Xinping Mao, Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2805-4
Cite this article as:
Haibo Feng, Shaohua Li, Kexiao Wang, Junheng Gao, Shuize Wang, Haitao Zhao, Zhenyu Han, Yong Deng, Yuhe Huang, and Xinping Mao, Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2805-4
引用本文 PDF XML SpringerLink
研究论文

轧制参数对共析珠光体钢轨奥氏体再结晶行为的影响



  • 通讯作者:

    高军恒    E-mail: Junhenggao@ustb.edu.cn

    汪水泽    E-mail: wangshuize@ustb.edu.cn

    毛新平    E-mail: maoxinping@126.com

文章亮点

  • (1) 系统地研究了压下量及轧制温度对共析珠光体轨道钢奥氏体再结晶行为的影响规律。
  • (2) 总结并分析了前序道次累积应变对后续轧制过程的影响。
  • (3) 总结并提出了在未完全再结晶及再结晶条件下,应变分配分别对奥氏体再结晶行为的影响规律。
  • 铁路向高速、重载的发展方向对轨道钢强韧性提出了更高的要求。而通过调控轧制工艺,细化奥氏体晶粒被认为是可以同时提高轨道钢的强度和韧性的有效途径。本文通过热模拟试验机,研究了应变速率恒定时,不同轧制压下量及轧制温度对奥氏体再结晶行为的影响,并分析了不同条件下,应变分配对奥氏体晶粒尺寸的影响规律。结果表明,单道次热轧过程中,奥氏体再结晶程度及再结晶晶粒尺寸随轧制温度的增加而增加,这使得平均奥氏体晶粒尺寸随轧制温度的增加呈现先减小后增加的趋势。三道次热轧过程中,在未完全再结晶条件下,部分变形量移至终轧道次有助于提高再结晶程度,促进晶粒细化;而在完全再结晶条件下,平均奥氏体晶粒尺寸仅随终轧道次轧制温度的降低而降低。并提出在保证完全再结晶的条件下,将部分低温区域压下量移至高温区域进行,有助于降低轧机负载且对最终晶粒细化没有明显影响。
  • Research Article

    Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel

    + Author Affiliations
    • Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels. In this work, the austenite dynamic recrystallization (DRX) behaviors of a eutectoid pearlite rail steel were studied using a thermo-mechanical simulator with hot deformation parameters frequently employed in rail production lines. The single-pass hot deformation results reveal that the prior austenite grain sizes (PAGSs) for samples with different deformation reductions decrease initially with an increase in deformation temperature. However, once the deformation temperature is beyond a certain threshold, the PAGSs start to increase. It can be attributed to the rise in DRX volume fraction and the increase of DRX grain with deformation temperature, respectively. Three-pass hot deformation results show that the accumulated strain generated in the first and second deformation passes can increase the extent of DRX. In the case of complete DRX, PAGS is predominantly determined by the deformation temperature of the final pass. It suggests a strategic approach during industrial production where part of the deformation reduction in low temperature range can be shifted to the medium temperature range to release rolling mill loads.
    • loading
    • Supplementary Information-s12613-023-2805-4.docx
    • [1]
      W. Zhong, J.W. Ren, W.J. Wang, Q.Y. Liu, and Z.R. Zhou, Investigation between rolling contact fatigue and wear of high speed and heavy haul railway, Tribol. Mater. Surf. Interfaces, 4(2010), No. 4, p. 197. doi: 10.1179/1751584X10Y.0000000003
      [2]
      X. Song, L. Wang, and Y. Liu, A review of the strengthening–toughening behavior and mechanisms of advanced structural materials by multifield coupling treatment, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 185. doi: 10.1007/s12613-021-2350-y
      [3]
      R.O. Ritchie, The conflicts between strength and toughness, Nat. Mater., 10(2011), No. 11, p. 817. doi: 10.1038/nmat3115
      [4]
      L. Zhou, W.J. Wang, Y. Hu, et al., Study on the wear and damage behaviors of hypereutectoid rail steel in low temperature environment, Wear, 456-457(2020), art. No. 203365. doi: 10.1016/j.wear.2020.203365
      [5]
      G. Lesiuk, M. Smolnicki, R. Mech, A. Zięty, and C. Fragassa, Analysis of fatigue crack growth under mixed mode (I + II) loading conditions in rail steel using CTS specimen, Eng. Fail. Anal., 109(2020), art. No. 104354. doi: 10.1016/j.engfailanal.2019.104354
      [6]
      R. Masoudi Nejad, Numerical study on rolling contact fatigue in rail steel under the influence of periodic overload, Eng. Fail. Anal., 115(2020), art. No. 104624. doi: 10.1016/j.engfailanal.2020.104624
      [7]
      L.B. Godefroid, A.T. Souza, and M.A. Pinto, Fracture toughness, fatigue crack resistance and wear resistance of two railroad steels, J. Mater. Res. Technol., 9(2020), No. 5, p. 9588. doi: 10.1016/j.jmrt.2020.06.092
      [8]
      M. Masoumi, A. Sinatora, and H. Goldenstein, Role of microstructure and crystallographic orientation in fatigue crack failure analysis of a heavy haul railway rail, Eng. Fail. Anal., 96(2019), p. 320. doi: 10.1016/j.engfailanal.2018.10.022
      [9]
      V.N. Khiratkar, K. Mishra, P. Srinivasulu, and A. Singh, Effect of inter-lamellar spacing and test temperature on the Charpy impact energy of extremely fine pearlite, Mater. Sci. Eng. A, 754(2019), p. 622. doi: 10.1016/j.msea.2019.03.121
      [10]
      S. Behera, R.K. Barik, M.B. Sk, R. Mitra, and D. Chakrabarti, Recipe for improving the impact toughness of high-strength pearlitic steel by controlling the cleavage cracking mechanisms, Mater. Sci. Eng. A, 764(2019), art. No. 138256. doi: 10.1016/j.msea.2019.138256
      [11]
      K. Mishra and A. Singh, Effect of interlamellar spacing on fracture toughness of nano-structured pearlite, Mater. Sci. Eng. A, 706(2017), p. 22. doi: 10.1016/j.msea.2017.08.115
      [12]
      M.M. Aranda, B. Kim, R. Rementeria, C. Capdevila, and C.G. de Andrés, Effect of prior austenite grain size on pearlite transformation in a hypoeuctectoid Fe–C–Mn steel, Metall. Mater. Trans. A, 45(2014), No. 4, p. 1778. doi: 10.1007/s11661-013-1996-0
      [13]
      D.F. Zeng, L.T. Lu, Y.H. Gong, N. Zhang, and Y.B. Gong, Optimization of strength and toughness of railway wheel steel by alloy design, Mater. Des., 92(2016), p. 998. doi: 10.1016/j.matdes.2015.12.096
      [14]
      S. Liu, F.C. Zhang, Z.N. Yang, M.M. Wang, and C.L. Zheng, Effects of Al and Mn on the formation and properties of nanostructured pearlite in high-carbon steels, Mater. Des., 93(2016), p. 73. doi: 10.1016/j.matdes.2015.12.134
      [15]
      M.S. Chen, Y.C. Lin, and X.S. Ma, The kinetics of dynamic recrystallization of 42CrMo steel, Mater. Sci. Eng. A, 556(2012), p. 260. doi: 10.1016/j.msea.2012.06.084
      [16]
      L.J. Zhao, N. Park, Y.Z. Tian, A. Shibata, and N. Tsuji, Combination of dynamic transformation and dynamic recrystallization for realizing ultrafine-grained steels with superior mechanical properties, Sci. Rep., 6(2016), art. No. 39127. doi: 10.1038/srep39127
      [17]
      C.X. Yue, L.W. Zhang, S.L. Liao, et al., Research on the dynamic recrystallization behavior of GCr15 steel, Mater. Sci. Eng. A, 499(2009), No. 1-2, p. 177. doi: 10.1016/j.msea.2007.11.123
      [18]
      Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu, Dynamic recrystallization behavior of a heat-resistant martensitic stainless steel 403Nb during hot deformation, J. Mater. Sci. Technol., 27(2011), No. 10, p. 913. doi: 10.1016/S1005-0302(11)60164-3
      [19]
      A. Chamanfar, S.M. Chentouf, M. Jahazi, and L.P. Lapierre-Boire, Austenite grain growth and hot deformation behavior in a medium carbon low alloy steel, J. Mater. Res. Technol., 9(2020), No. 6, p. 12102. doi: 10.1016/j.jmrt.2020.08.114
      [20]
      G.R. Ebrahimi, A. Momeni, and H.R. Ezatpour, Modeling the viscoplastic behavior and grain size in a hot worked Nb-bearing high-Mn steel, Mater. Sci. Eng. A, 714(2018), p. 25. doi: 10.1016/j.msea.2017.12.094
      [21]
      K. Arun Babu, Y.H. Mozumder, C.N. Athreya, V.S. Sarma, and S. Mandal, Implication of initial grain size on DRX mechanism and grain refinement in super-304H SS in a wide range of strain rates during large-strain hot deformation, Mater. Sci. Eng. A, 832(2022), art. No. 142269. doi: 10.1016/j.msea.2021.142269
      [22]
      H.C. Ji, Z.M. Cai, W.C. Pei, X.M. Huang, and Y.H. Lu, DRX behavior and microstructure evolution of 33Cr23Ni8Mn3N: Experiment and finite element simulation, J. Mater. Res. Technol., 9(2020), No. 3, p. 4340. doi: 10.1016/j.jmrt.2020.02.059
      [23]
      H.T. Lu, D.Z. Li, S.Y. Li, and Y.A. Chen, Hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 734. doi: 10.1007/s12613-022-2531-3
      [24]
      J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami kinetics of dynamic recrystallization, Acta Mater., 57(2009), No. 9, p. 2748. doi: 10.1016/j.actamat.2009.02.033
      [25]
      C. Facusseh, A. Salinas, A. Flores, and G. Altamirano, Study of static recrystallization kinetics and the evolution of austenite grain size by dynamic recrystallization refinement of an eutectoid steel, Metals, 9(2019), No. 12, art. No. 1289. doi: 10.3390/met9121289
      [26]
      P. Springer and U. Prahl, Characterisation of mechanical behavior of 18CrNiMo7-6 steel with and without nb under warm forging conditions through processing maps analysis, J. Mater. Process. Technol., 237(2016), p. 216. doi: 10.1016/j.jmatprotec.2016.05.021
      [27]
      L. Chen, W.Y. Sun, J. Lin, G.Q. Zhao, and G.C. Wang, Modelling of constitutive relationship, dynamic recrystallization and grain size of 40Cr steel during hot deformation process, Results Phys., 12(2019), p. 784. doi: 10.1016/j.rinp.2018.12.046
      [28]
      S. Saadatkia, H. Mirzadeh, and J.M. Cabrera, Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels, Mater. Sci. Eng. A, 636(2015), p. 196. doi: 10.1016/j.msea.2015.03.104
      [29]
      M.J. Zhao, L. Huang, C.M. Li, J.J. Li, and P.C. Li, Evaluation of the deformation behaviors and hot workability of a high-strength low-alloy steel, Mater. Sci. Eng. A, 810(2021), art. No. 141031. doi: 10.1016/j.msea.2021.141031
      [30]
      P. Dolzhenko, M. Tikhonova, R. Kaibyshev, and A. Belyakov, Peculiarities of DRX in a highly-alloyed austenitic stainless steel, Materials, 14(2021), No. 14, art. No. 4004. doi: 10.3390/ma14144004
      [31]
      M. Bambach and S. Seuren, On instabilities of force and grain size predictions in the simulation of multi-pass hot rolling processes, J. Mater. Process. Technol., 216(2015), p. 95. doi: 10.1016/j.jmatprotec.2014.07.018
      [32]
      A. Karmakar, S. Biswas, S. Mukherjee, D. Chakrabarti, and V. Kumar, Effect of composition and thermo-mechanical processing schedule on the microstructure, precipitation and strengthening of Nb-microalloyed steel, Mater. Sci. Eng. A, 690(2017), p. 158. doi: 10.1016/j.msea.2017.02.101
      [33]
      S.F. Rodrigues, C. Aranas, B.H. Sun, F. Siciliano, S. Yue, and J.J. Jonas, Effect of grain size and residual strain on the dynamic transformation of austenite under plate rolling conditions, Steel Res. Int., 89(2018), No. 6, art. No. 1700547. doi: 10.1002/srin.201700547
      [34]
      H. Mirzadeh, M.H. Parsa, and D. Ohadi, Hot deformation behavior of austenitic stainless steel for a wide range of initial grain size, Mater. Sci. Eng. A, 569(2013), p. 54. doi: 10.1016/j.msea.2013.01.050
      [35]
      R. Mohammadi Ahmadabadi, M. Naderi, J. Aghazadeh Mohandesi, and J.M. Cabrera, Grain growth behaviour of an AISI 422 martensitic stainless steel after hot deformation process, Can. Metall. Q., 57(2018), No. 3, p. 367. doi: 10.1080/00084433.2018.1444414

    Catalog


    • /

      返回文章
      返回