Cite this article as: |
Miao Du, Hongyan Lü, Kaidi Du, Shuohang Zheng, Xiaotong Wang, Xiaotong Deng, Ronghua Zeng, and Xinglong Wu, Upcycling the spent graphite/LiCoO2 batteries for high-voltage graphite/LiCoPO4-co-workable dual-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1745-1751. https://doi.org/10.1007/s12613-023-2807-2 |
吴兴隆 E-mail: xinglong@nenu.edu.cn
Supplementary Information-s12613-023-2807-2.docx |
[1] |
P.K. Jones, U. Stimming, and A.A. Lee, Impedance-based forecasting of lithium-ion battery performance amid uneven usage, Nat. Commun., 13(2022), No. 1, art. No. 4806. doi: 10.1038/s41467-022-32422-w
|
[2] |
Z.Y. Gu, J.Z. Guo, J.M. Cao, et al., An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density, Adv. Mater., 34(2022), No. 14, art. No. 2110108. doi: 10.1002/adma.202110108
|
[3] |
Q.P. Lu, Z.H. Du, J. Wang, et al., Editorial for special issue on renewable energy conversion, utilization and storage, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1855. doi: 10.1007/s12613-023-2746-y
|
[4] |
Z.Z. Yu, G.Q. Zhao, F.L. Ji, et al., Collaboratively enhancing electrochemical properties of LiNi0.83Co0.11Mn0.06O2 through doping and coating of quadrivalent elements, Rare Met., 42(2023), No. 12, p. 4103. doi: 10.1007/s12598-023-02356-3
|
[5] |
R. Zhang, C.Y. Wang, P.C. Zou, et al., Compositionally complex doping for zero-strain zero-cobalt layered cathodes, Nature, 610(2022), No. 7930, p. 67. doi: 10.1038/s41586-022-05115-z
|
[6] |
J. Lin, E.S. Fan, X.D. Zhang, et al., Sustainable upcycling of spent lithium-ion batteries cathode materials: Stabilization by in situ Li/Mn disorder, Adv. Energy Mater., 12(2022), No. 26, art. No. 2201174. doi: 10.1002/aenm.202201174
|
[7] |
K. Kim, D. Raymond, R. Candeago, and X. Su, Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control, Nat. Commun., 12(2021), No. 1, art. No. 6554. doi: 10.1038/s41467-021-26814-7
|
[8] |
M. Du, J.Z. Guo, S.H. Zheng, et al., Direct reuse of LiFePO4 cathode materials from spent lithium-ion batteries: Extracting Li from brine, Chin. Chem. Lett., 34(2023), No. 6, art. No. 107706. doi: 10.1016/j.cclet.2022.07.049
|
[9] |
K.Y. Zhang, Y.Z. Xu, Y.C. Lin, et al., Enriching redox active sites by interconnected nanowalls-like nickel cobalt phospho-sulfide nanosheets for high performance supercapacitors, Chin. Chem. Lett., 32(2021), No. 11, p. 3553. doi: 10.1016/j.cclet.2021.02.034
|
[10] |
Y.T. Xu, S.J. Dai, X.F. Wang, X.W. Wu, Y.G. Guo, and X.X. Zeng, An ion-percolating electrolyte membrane for ultrahigh efficient and dendrite-free lithium metal batteries, InfoMat, 5(2023), No. 12, art. No. e12498. doi: 10.1002/inf2.12498
|
[11] |
J.J. Roy, S. Rarotra, V. Krikstolaityte, et al., Green recycling methods to treat lithium-ion batteries e-waste: A circular approach to sustainability, Adv. Mater., 34(2022), No. 25, art. No. 2103346. doi: 10.1002/adma.202103346
|
[12] |
M. Xiang, W.X. Fan, W. Lin, et al., Triple kill: Fabrication of composites coming from waste face masks, polystyrene microplastics, graphene, and their electromagnetic interference shielding behaviors, Carbon Neutralization, 2(2023), No. 5, p. 616. doi: 10.1002/cnl2.86
|
[13] |
K.D. Du, E.H. Ang, X.L. Wu, and Y.C. Liu, Progresses in sustainable recycling technology of spent lithium-ion batteries, Energy Environ. Mater., 5(2022), No. 4, p. 1012. doi: 10.1002/eem2.12271
|
[14] |
J. Wang, Y.F. Yuan, X.H. Rao, et al., Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1859. doi: 10.1007/s12613-023-2666-x
|
[15] |
Y.N. Yang, Y.J. Yang, C.L. He, et al., Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 897. doi: 10.1007/s12613-022-2571-8
|
[16] |
H.Y. Lu, R.L. Hou, S.Y. Chu, H.S. Zhou, and S.H. Guo, Progress on modification strategies of layered lithium-rich cathode materials for high energy lithium-ion batteries, Acta Phys. Chim. Sin., 39(2023), No. 7, art. No. 2211057.
|
[17] |
Z.J. Baum, R.E. Bird, X. Yu, and J. Ma, Lithium-ion battery recycling─Overview of techniques and trends, ACS Energy Lett., 7(2022), No. 2, p. 712. doi: 10.1021/acsenergylett.1c02602
|
[18] |
C.M. Costa, J.C. Barbosa, R. Gonçalves, H. Castro, F.J. del Campo, and S. Lanceros-Méndez, Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities, Energy Storage Mater., 37(2021), p. 433. doi: 10.1016/j.ensm.2021.02.032
|
[19] |
M. Wasesa, T. Hidayat, D.T. Andariesta, et al., Economic and environmental assessments of an integrated lithium-ion battery waste recycling supply chain: A hybrid simulation approach, J. Clean. Prod., 379(2022), art. No. 134625. doi: 10.1016/j.jclepro.2022.134625
|
[20] |
R.C. Xu, L.H. Jiang, N. Duan, et al., Research on microstructure of membrane-slime layer on lead-based anode surface in zinc hydrometallurgy by combining μ-XRF with mm-XRF, J. Clean. Prod., 379(2022), art. No. 134568. doi: 10.1016/j.jclepro.2022.134568
|
[21] |
X.T. Wang, Z.Y. Gu, E.H. Ang, X.X. Zhao, X.L. Wu, and Y.C. Liu, Prospects for managing end-of-life lithium-ion batteries: Present and future, Interdiscip. Mater., 1(2022), No. 3, p. 417. doi: 10.1002/idm2.12041
|
[22] |
T. Zhong, H.Y. Zhang, M.C. Song, et al., FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2270. doi: 10.1007/s12613-023-2669-7
|
[23] |
Y.L. Heng, Z.Y. Gu, J.Z. Guo, and X.L. Wu, Research progresses on vanadium-based cathode materials for aqueous zinc-ion batteries, Acta Phys. Chim. Sin., 37(2021), No. 3, art. No. 2005013.
|
[24] |
L. Cassayre, B. Guzhov, M. Zielinski, and B. Biscans, Chemical processes for the recovery of valuable metals from spent nickel metal hydride batteries: A review, Renewable Sustainable Energy Rev., 170(2022), art. No. 112983. doi: 10.1016/j.rser.2022.112983
|
[25] |
Y.H. Miao, S.Y. Qi, G. Chen, et al., Efficient removal of As, Cu and Cd and synthesis of photo-catalyst from Cu-smelting waste acid through sulfide precipitation by biogenic gaseous H2S produced by anaerobic membrane bioreactor, Chem. Eng. J., 451(2023), art. No. 138096. doi: 10.1016/j.cej.2022.138096
|
[26] |
H. Dang, Z.D. Chang, H.L. Zhou, S.H. Ma, M. Li, and J.L. Xiang, Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p.1715. doi: 10.1007/s12613-021-2366-3
|
[27] |
K.D. Du, Y.F. Meng, X.X. Zhao, et al., A unique co-recovery strategy of cathode and anode from spent LiFePO4 battery, Sci. China Mater., 65(2022), No. 3, p. 637. doi: 10.1007/s40843-021-1772-6
|
[28] |
J. Lin, J.W. Wu, E.S. Fan, et al., Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 942. doi: 10.1007/s12613-022-2430-7
|
[29] |
T. Wang, H.M. Luo, Y.C. Bai, J.L. Li, I. Belharouak, and S. Dai, Direct recycling of spent NCM cathodes through ionothermal lithiation, Adv. Energy Mater., 10(2020), No. 30, art. No. 2001204. doi: 10.1002/aenm.202001204
|
[30] |
B. Xu, P. Dong, J.G. Duan, D. Wang, X.S. Huang, and Y.J. Zhang, Regenerating the used LiFePO4 to high performance cathode via mechanochemical activation assisted V5+ doping, Ceram. Int., 45(2019), No. 9, p. 11792. doi: 10.1016/j.ceramint.2019.03.057
|
[31] |
X.Q. Meng, H.B. Cao, J. Hao, P.G. Ning, G.J. Xu, and Z. Sun, Sustainable preparation of LiNi1/3Co1/3Mn1/3O2–V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag, ACS Sustainable Chem. Eng., 6(2018), No. 5, p. 5797. doi: 10.1021/acssuschemeng.7b03880
|
[32] |
S.H. Zheng, X.T. Wang, Z.Y. Gu, J.Z. Guo, X.L. Wu, and H.Y. Xu, Advances and challenges on recycling the electrode and electrolyte materials in spent lithium-ion batteries, Mater. Lab, 1(2022), No. 4, art. No. 220036. doi: 10.54227/mlab.20220036
|
[33] |
Z.Y. Gu, J.Z. Guo, X.X. Zhao, et al., High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries, InfoMat, 3(2021), No. 6, p. 694. doi: 10.1002/inf2.12184
|
[34] |
M.C. Guo, W. Tang, Y. Hong, et al., Self-carbonization of soluble organic cathodes enables stable Na-ion batteries, Sci. China Mater., 66(2023), No. 7, p. 2621. doi: 10.1007/s40843-022-2405-6
|
[35] |
Y. Yang, J.Z. Guo, Z.Y. Gu, et al., Effective recycling of the whole cathode in spent lithium ion batteries: From the widely used oxides to high-energy/stable phosphates, ACS Sustainable Chem. Eng., 7(2019), No. 14, p. 12014. doi: 10.1021/acssuschemeng.9b00526
|
[36] |
M. Du, K.D. Du, J.Z. Guo, et al., Direct reuse of oxide scrap from retired lithium-ion batteries: Advanced cathode materials for sodium-ion batteries, Rare Met., 42(2023), No. 5, p. 1603. doi: 10.1007/s12598-022-02230-8
|
[37] |
J.L. Yang, X.X. Zhao, W.H. Li, et al., Advanced cathode for dual-ion batteries: Waste-to-wealth reuse of spent graphite from lithium-ion batteries, eScience, 2(2022), No. 1, p. 95. doi: 10.1016/j.esci.2021.11.001
|
[38] |
K.K. Jena, A. AlFantazi, and A.T. Mayyas, Efficient and cost-effective hybrid composite materials based on thermoplastic polymer and recycled graphite, Chem. Eng. J., 430(2022), art. No. 132667. doi: 10.1016/j.cej.2021.132667
|
[39] |
Y.F. Meng, H.J. Liang, C.D. Zhao, et al., Concurrent recycling chemistry for cathode/anode in spent graphite/LiFePO4 batteries: Designing a unique cation/anion-co-workable dual-ion battery, J. Energy Chem., 64(2022), p. 166. doi: 10.1016/j.jechem.2021.04.047
|
[40] |
N.J. Zhang, W.J. Deng, Z.X. Xu, and X.L. Wang, Upcycling of spent LiCoO2 cathodes via nickel- and manganese-doping, Carbon Energy, 5(2023), No. 1, art. No. e231. doi: 10.1002/cey2.231
|
[41] |
J.X. Zhang, P.F. Wang, P.X. Bai, et al., Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode, Adv. Mater., 34(2022), No. 8, art. No. 2108353. doi: 10.1002/adma.202108353
|
[42] |
J.Z. Guo, H.X. Zhang, Z.Y. Gu, et al., Heterogeneous NASICON-type composite as low-cost, high-performance cathode for sodium-ion batteries, Adv. Funct. Mater., 32(2022), No. 52, art. No. 2209482. doi: 10.1002/adfm.202209482
|
[43] |
J.Y. Wu and C.J. Tsai, Qualitative modeling of the electrolyte oxidation in long-term cycling of LiCoPO4 for high-voltage lithium-ion batteries, Electrochim. Acta, 368(2021), art. No. 137585. doi: 10.1016/j.electacta.2020.137585
|
[44] |
N. Priyadharsini, S. Shanmugapriya, P.R. Kasturi, S. Surendran, and R.K. Selvan, Morphology-dependent electrochemical properties of sol-gel synthesized LiCoPO4 for aqueous hybrid capacitors, Electrochim. Acta, 289(2018), p. 516. doi: 10.1016/j.electacta.2018.08.086
|
[45] |
Y. Wang, J.Y. Qiu, Z.B. Yu, et al., AlF3-modified LiCoPO4 for an advanced cathode towards high energy lithium-ion battery, Ceram. Int., 44(2018), No. 2, p. 1312. doi: 10.1016/j.ceramint.2017.08.084
|
[46] |
X.R. Yang, C.W. Wang, P.F. Yan, et al., Pushing lithium cobalt oxides to 4.7V by lattice-matched interfacial engineering, Adv. Energy Mater., 12(2022), No. 23, art. No. 2200197. doi: 10.1002/aenm.202200197
|
[47] |
H.J. Liang, Z.Y. Gu, X.X. Zhao, et al., Ether-based electrolyte chemistry towards high-voltage and long-life Na-ion full batteries, Angew. Chem. Int. Ed., 60(2021), No. 51, p. 26837. doi: 10.1002/anie.202112550
|