留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 6
Jun.  2024

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  477
  • HTML全文浏览量:  257
  • PDF下载量:  31
  • 被引次数: 0
Ying Gao, Ce Zhang, Jiazhen Zhang, and Xin Lu, Microstructure evolution and strengthening mechanism of high-performance powder metallurgy TA15 titanium alloy by hot rolling, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1426-1436. https://doi.org/10.1007/s12613-023-2809-0
Cite this article as:
Ying Gao, Ce Zhang, Jiazhen Zhang, and Xin Lu, Microstructure evolution and strengthening mechanism of high-performance powder metallurgy TA15 titanium alloy by hot rolling, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1426-1436. https://doi.org/10.1007/s12613-023-2809-0
引用本文 PDF XML SpringerLink
研究论文

高性能粉末冶金TA15钛合金热轧制组织演变与强化机理


  • 通讯作者:

    张策    E-mail: zhangce@ustb.edu.cn

    路新    E-mail: luxin@ustb.edu.cn

文章亮点

  • (1) 以元素粉末为原料,利用粉末冶金技术与高温热轧制相结合制备了TA15钛合金板材。
  • (2) 系统研究了烧结温度对TA15钛合金组织结构和性能的影响。
  • (3) 1200°C下仅2个道次且道次间不回炉完成了TA15板材80%下压量的热轧制。
  • (4) 揭示了粉末冶金TA15钛板的组织演变与强化机理,抗拉强度达1247 MPa,延伸率14.0%。
  • 利用粉末冶金烧结坯进行热变形是制备钛合金加工材的有效技术之一,对高合金化钛合金来讲其优势更为显著。本研究以元素粉末为原料,采用粉末冶金冷压烧结结合高温热轧制备了Ti–6.5Al–2Zr–Mo–V(TA15)钛合金板,探究了不同工艺参数下合金的微观组织结构与力学性能,并利用OM、EBSD等对合金组织演变与力学性能强化机理进行了分析。结果显示,合金在烧结过程中化学成分扩散均匀无偏析,提高烧结温度加速了基体孔洞的闭合;在1200°C下2个道次80%形变量的热轧制及固溶时效后,所得钛合金板材的室温抗拉强度与延伸率分别为1247 MPa、14.0%,与烧结坯相比分别增加了24.5%及40.0%;合金的组织因连续动态再结晶显著细化,被低角度晶界包围的亚结构旋转并吸收位错使得再结晶得以完成;热轧结合热处理后合金的强度与塑性协同提高,这源于热处理后致密且均匀、细小的再结晶组织,高温下热轧制的完成源于多滑移系的协同作用。
  • Research Article

    Microstructure evolution and strengthening mechanism of high-performance powder metallurgy TA15 titanium alloy by hot rolling

    + Author Affiliations
    • Hot deformation of sintered billets by powder metallurgy (PM) is an effective preparation technique for titanium alloys, which is more significant for high-alloying alloys. In this study, Ti–6.5Al–2Zr–Mo–V (TA15) titanium alloy plates were prepared by cold pressing sintering combined with high-temperature hot rolling. The microstructure and mechanical properties under different process parameters were investigated. Optical microscope, electron backscatter diffraction, and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism. The results showed that the chemical compositions were uniformly diffused without segregation during sintering, and the closing of the matrix craters was accelerated by increasing the sintering temperature. The block was hot rolled at 1200°C with an 80% reduction under only two passes without annealing. The strength and elongation of the plate at 20–25°C after solution and aging were 1247 MPa and 14.0%, respectively, which were increased by 24.5% and 40.0%, respectively, compared with the as-sintered alloy at 1300°C. The microstructure was significantly refined by continuous dynamic recrystallization, which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries. After hot rolling combined with heat treatment, the strength and plasticity of PM-TA15 were significantly improved, which resulted from the dense, uniform, and fine recrystallization structure and the synergistic effect of multiple slip systems.
    • loading
    • [1]
      D. Banerjee and J.C. Williams, Perspectives on titanium science and technology, Acta Mater., 61(2013), No. 3, p. 844. doi: 10.1016/j.actamat.2012.10.043
      [2]
      H.Z. Niu, H.R. Zhang, Q.Q. Sun, and D.L. Zhang, Breaking through the strength-ductility trade-off dilemma in powder metallurgy Ti–6Al–4V titanium alloy, Mater. Sci. Eng. A, 754(2019), p. 361. doi: 10.1016/j.msea.2019.03.089
      [3]
      N. Soro, H. Attar, X.H. Wu, and M.S. Dargusch, Investigation of the structure and mechanical properties of additively manufactured Ti–6Al–4V biomedical scaffolds designed with a Schwartz primitive unit-cell, Mater. Sci. Eng. A, 745(2019), p. 195. doi: 10.1016/j.msea.2018.12.104
      [4]
      P. Parvizian, M. Morakabati, and S. Sadeghpour, Effect of hot rolling and annealing temperatures on the microstructure and mechanical properties of SP-700 alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 374. doi: 10.1007/s12613-019-1922-6
      [5]
      T.L. Zhang, Z.H. Huang, T. Yang, et al. , In situ design of advanced titanium alloy with concentration modulations by additive manufacturing, Science, 374(2021), No. 6566, p. 478. doi: 10.1126/science.abj3770
      [6]
      J.Y. Zhang, B.N. Qian, Y.J. Wu, et al., A kink-bands reinforced titanium alloy showing 1.3 GPa compressive yield strength: Towards extra high-strength/strain-transformable Ti alloys, J. Mater. Sci. Technol., 74(2021), p. 21. doi: 10.1016/j.jmst.2020.10.004
      [7]
      Y. Chong, T. Tsuru, B.Q. Guo, R. Gholizadeh, K. Inoue, and N. Tsuji, Ultrahigh yield strength and large uniform elongation achieved in ultrafine-grained titanium containing nitrogen, Acta Mater., 240(2022), art. No. 118356. doi: 10.1016/j.actamat.2022.118356
      [8]
      V. Duz, M. Matviychuk, A. Klevtsov, and V. Moxson, Industrial application of titanium hydride powder, Met. Powder Rep., 72(2017), No. 1, p. 30. doi: 10.1016/j.mprp.2016.02.051
      [9]
      L.P. Zhu, Y. Pan, Y.J. Liu, et al., Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 697. doi: 10.1007/s12613-021-2371-6
      [10]
      S.M. El-Soudani, K.O. Yu, E.M. Crist, et al., Optimization of blended-elemental powder-based titanium alloy extrusions for aerospace applications, Metall. Mater. Trans. A, 44(2013), No. 2, p. 899. doi: 10.1007/s11661-012-1437-5
      [11]
      Y.F. Luo, Y.H. Xie, W. Zeng, J.M. Liang, and D.L. Zhang, Microstructure and mechanical properties of Ti–6Al–4V rods fabricated by powder compact extrusion of TiH2/Al60V40 powder blend, Metall. Mater. Trans. A, 50(2019), No. 4, p. 1643. doi: 10.1007/s11661-019-05116-0
      [12]
      Z. Wang, Y.N. Tan, and N. Li, Powder metallurgy of titanium alloys: A brief review, J. Alloys Compd., 965(2023), art. No. 171030. doi: 10.1016/j.jallcom.2023.171030
      [13]
      D.D. Zhang, L.Y. Bao, Q. Li, J.P. Han, and Y.Y. Chen, Microstructure evolution and properties of powder metallurgy Ti43Al9V0.3Y alloy sheets at different rolling temperatures, Mater. Sci. Eng. A, 866(2023), art. No. 144685. doi: 10.1016/j.msea.2023.144685
      [14]
      J.K. Hong, C.H. Lee, J.H. Kim, J.T. Yeom, and N.K. Park, Ti strip properties fabricated by powder rolling method, Surf. Rev. Lett., 17(2010), No. 2, p. 229. doi: 10.1142/S0218625X1001393X
      [15]
      S. Chikosha, T.C. Shabalala, and H.K. Chikwanda, Effect of particle morphology and size on roll compaction of Ti-based powders, Powder Technol., 264(2014), p. 310. doi: 10.1016/j.powtec.2014.05.033
      [16]
      G.M.D. Cantin, P.L. Kean, N.A. Stone, et al., Innovative consolidation of titanium and titanium alloy powders by direct rolling, Powder Metall., 54(2011), No. 3, p. 188. doi: 10.1179/174329011X13045076771795
      [17]
      W.H. Peter, T. Muth, W. Chen, et al., Titanium sheet fabricated from powder for industrial applications, JOM, 64(2012), No. 5, p. 566. doi: 10.1007/s11837-012-0309-1
      [18]
      D. Mangabhai, K. Araci, M.K. Akhtar, N.A. Stone, and D. Cantin, Processing of titanium powder into consolidated parts & sheet, Key Eng. Mater., 551(2013), p. 57. doi: 10.4028/www.scientific.net/KEM.551.57
      [19]
      G.M.D. Cantin and M.A. Gibson, Titanium sheet fabrication from powder, [in] M. Qian and F.H.S. Froes, eds., Titanium Powder Metallurgy, Amsterdam, Elsevier, (2015), p. 383.
      [20]
      K.A. Gogaev, V.S. Voropaev, Y.N. Podrezov, Y.I. Yevych, and A.Y. Koval, The effect of compacting rolling on the properties of titanium powder mill products, Powder Metall. Met. Ceram., 55(2017), No. 11-12, p. 633. doi: 10.1007/s11106-017-9849-9
      [21]
      K.A. Gogaev, V.S. Voropaev, Y.N. Podrezov, et al., Mechanical and fatigue properties of powder titanium strips, obtained by asymmetric rolling, Powder Metall. Met. Ceram., 56(2017), No. 1-2, p. 53. doi: 10.1007/s11106-017-9871-y
      [22]
      J. O’Flynn and S.F. Corbin, Effects of powder material and process parameters on the roll compaction, sintering and cold rolling of titanium sponge, Powder Metall., 62(2019), No. 5, p. 307. doi: 10.1080/00325899.2019.1651505
      [23]
      R.J. Xu, B. Liu, Z.Q. Yan, F. Chen, W.M. Guo, and Y. Liu, Low-cost and high-strength powder metallurgy Ti–Al–Mo–Fe alloy and its application, J. Mater. Sci., 54(2019), No. 18, p. 12049. doi: 10.1007/s10853-019-03734-y
      [24]
      A. Govender, C. Bemont, and S. Chikosha, Sintering high green density direct powder rolled titanium strips, in argon atmosphere, Metals, 11(2021), No. 6, art. No. 936. doi: 10.3390/met11060936
      [25]
      Y. Zhou, F. Yang, C.G. Chen, et al., Mechanical property enhancement of high-plasticity powder metallurgy titanium with a high oxygen concentration, J. Alloys Compd., 885(2021), art. No. 161006. doi: 10.1016/j.jallcom.2021.161006
      [26]
      F.C. Qiu, T. Cheng, Y.C. Song, et al., Achieving superior performance in powder-metallurgy near-β titanium alloy by combining hot rolling and rapid heat treatment followed by aging, J. Mater. Sci. Technol., 171(2024), p. 24. doi: 10.1016/j.jmst.2023.06.034
      [27]
      Y. Chong, R.P. Zhang, M.S. Hooshmand, et al., Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al, Nat. Commun., 12(2021), No. 1, art. No. 6158. doi: 10.1038/s41467-021-26374-w
      [28]
      Z.Q. Li, K. Han, H.L. Hou, B.Y. Wang, and Z.H. Hu, Effect of hydrogen on diffusion bonding behavior and mechanism of Ti–6Al–4V alloy, Rare Met. Mater. Eng., 43(2014), No. 2, p. 306. doi: 10.1016/S1875-5372(14)60064-3
      [29]
      H.P. Wu, H.L. Peng, X.F. Li, and J. Chen, Effect of hydrogen addition on diffusion bonding behavior of Ti-55 alloy, Mater. Sci. Eng. A, 739(2019), p. 244. doi: 10.1016/j.msea.2018.10.032
      [30]
      W.C. Xu, D.B. Shan, Z.L. Wang, G.P. Yang, L. Yan, and D.C. Kang, Effect of spinning deformation on microstructure evolution and mechanical property of TA15 titanium alloy, Trans. Nonferrous Met. Soc. China, 17(2007), No. 6, p. 1205. doi: 10.1016/S1003-6326(07)60250-7
      [31]
      Q.J. Sun and X. Xie, Microstructure and mechanical properties of TA15 alloy after thermo-mechanical processing, Mater. Sci. Eng. A, 724(2018), p. 493. doi: 10.1016/j.msea.2018.03.109
      [32]
      Z.C. Sun, J. Zhang, H. Yang, and H.L. Wu, Effect of workpiece size on microstructure evolution of different regions for TA15 Ti-alloy isothermal near-β forging by local loading, J. Mater. Process. Technol., 222(2015), p. 234. doi: 10.1016/j.jmatprotec.2015.02.039
      [33]
      Y.G. Zhou, W.D. Zeng, and H.Q. Yu, An investigation of a new near-beta forging process for titanium alloys and its application in aviation components, Mater. Sci. Eng. A, 393(2005), No. 1-2, p. 204. doi: 10.1016/j.msea.2004.10.016
      [34]
      D.M. Huang, H.L. Wang, X. Chen, Y. Chen, and H. Guo, Influence of forging process on microstructure and mechanical properties of large section Ti–6.5Al–1Mo–1V–2Zr alloy bars, Trans. Nonferrous Met. Soc. China, 23(2013), No. 8, p. 2276. doi: 10.1016/S1003-6326(13)62729-6
      [35]
      Z.C. Sun and H. Yang, Microstructure and mechanical properties of TA15 titanium alloy under multi-step local loading forming, Mater. Sci. Eng. A, 523(2009), No. 1-2, p. 184. doi: 10.1016/j.msea.2009.05.058
      [36]
      W.J. Zhou, Z.C. Sun, S.P. Zuo, H. Yang, and X.G. Fan, Shape optimization of initial billet for TA15 Ti-alloy complex components preforming, Rare Met. Mater. Eng., 40(2011), No. 6, p. 951. doi: 10.1016/S1875-5372(11)60039-8
      [37]
      S.Z. Zhang, J.W. Liu, Q.Y. Zhao, C.J. Zhang, L. Bolzoni, and F. Yang, Microstructure characterization of a high strength Ti–6Al–4V alloy prepared from a powder mixture of TiH2 and 60Al40V masteralloy powders, J. Alloys Compd., 818(2020), art. No. 152815. doi: 10.1016/j.jallcom.2019.152815
      [38]
      X.X. Ye, H. Imai, J.H. Shen, et al., Dynamic recrystallization behavior and strengthening-toughening effects in a near-α Ti–xSi alloy processed by hot extrusion, Mater. Sci. Eng. A, 684(2017), p. 165. doi: 10.1016/j.msea.2016.12.054
      [39]
      Y.X. Li, P.F. Gao, J.Y. Yu, S. Jin, S.Q. Chen, and M. Zhan, Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation, J. Mater. Sci. Technol., 98(2022), p. 72. doi: 10.1016/j.jmst.2021.05.008
      [40]
      Y.F. Wang, C.X. Huang, X.T. Fang, H.W. Höppel, M. Göken, and Y.T. Zhu, Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient, Scripta. Mater., 174(2020), p. 19. doi: 10.1016/j.scriptamat.2019.08.022
      [41]
      X.Z. Ma, Z.L. Xiang, T. Li, et al., Evolution laws of microstructures and mechanical properties during heat treatments for near-α high-temperature titanium alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1596. doi: 10.1007/s12613-021-2248-8
      [42]
      L. Lei, Q.Y. Zhao, C. Wu, et al., Variant selection, coarsening behavior of α phase and associated tensile properties in an α+β titanium alloy, J. Mater. Sci. Technol., 99(2022), p. 101. doi: 10.1016/j.jmst.2021.04.069
      [43]
      W. Long, S. Zhang, Y.L. Liang, and M.G. Ou, Influence of multi-stage heat treatment on the microstructure and mechanical properties of TC21 titanium alloy, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 296. doi: 10.1007/s12613-020-1996-1

    Catalog


    • /

      返回文章
      返回