Cite this article as:

Haiping Lei, Tianwei Wei, Jiguo Tu, and Shuqiang Jiao, Core–shell mesoporous carbon hollow spheres as Se hosts for advanced Al–Se batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp.899-906. https://dx.doi.org/10.1007/s12613-023-2810-7
Haiping Lei, Tianwei Wei, Jiguo Tu, and Shuqiang Jiao, Core–shell mesoporous carbon hollow spheres as Se hosts for advanced Al–Se batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp.899-906. https://dx.doi.org/10.1007/s12613-023-2810-7
引用本文 PDF XML SpringerLink

基于核壳结构多孔空心碳球复合硒正极铝离子电池性能研究

摘要: 目前,国际上对铝离子电池的研究主要集中在高能量密度、长循环寿命正极材料的开发。与目前研究较多的石墨类正极材料相比,硒基于氧化还原反应的四电子转移理论比容量高达1357 mAh·g−1,具有较高的放电平台(Se:~1.5 V)。但是现有的研究发现,铝–硒电池存在活性物质本征导电性差,中间产物易在电解质中溶解扩散导致比容量衰减的问题。本文通过半牺牲模板法以核壳结构SiO2/间苯二酚甲醛为模板,通过水热法制备核壳SiO2/间苯二酚甲醛@TiO2复合材料,在N2气氛下煅烧处理得到三维SiO2@C@TiN,去除SiO2后得到了三维结构的核壳C@TiN空心碳球,最后在400°C下成功负载硒得到了核壳结构多孔空心碳球复合硒正极材料Se@C@TiN。其与铝负极组成的Al-Se@C@TiN电池在1000 mA·g−1电流密度下,首圈放电比容量为377 mAh·g−1,循环200圈后,放电比容量保存在86 mAh·g−1。性能较未改善的硒正极有所提高,归因于核壳结构多孔空心碳球的高导电性和Se@C@TiN独特的结构。

 

Core–shell mesoporous carbon hollow spheres as Se hosts for advanced Al–Se batteries

Abstract: Incorporating a selenium (Se) positive electrode into aluminum (Al)-ion batteries is an effective strategy for improving the overall battery performance. However, the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products. In this work, we aim to harness the advantages of Se while reducing its limitations by preparing a core–shell mesoporous carbon hollow sphere with a titanium nitride (C@TiN) host to load 63.9wt% Se as the positive electrode material for Al–Se batteries. Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN, the obtained core–shell mesoporous carbon hollow spheres coated with Se (Se@C@TiN) display superior utilization of the active material and remarkable cycling stability. As a result, Al–Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g−1 at a current density of 1000 mA·g−1 while maintaining a discharge specific capacity of 86.0 mAh·g−1 over 200 cycles. This improved cycling performance is ascribed to the high electrical conductivity of the core–shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN.

 

/

返回文章
返回