Cite this article as: |
Wenwen Han, Hongying Yang, and Linlin Tong, Interaction mechanism of cyanide with pyrite during the cyanidation of pyrite and the decyanation of pyrite cyanide residues by chemical oxidation, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 1996-2005. https://doi.org/10.1007/s12613-023-2814-3 |
杨洪英 E-mail: yanghy@smm.neu.edu.cn
[1] |
Z.W. Liu, X.Y. Guo, Q.H. Tian, and L. Zhang, A systematic review of gold extraction: Fundamentals, advancements, and challenges toward alternative lixiviants, J. Hazard. Mater., 440(2022), art. No. 129778. doi: 10.1016/j.jhazmat.2022.129778
|
[2] |
Y. Xu, W.S. Li, Q.F. Huang, et al., Long-term degradation characteristics of cyanide in closed monofills and its effects on the environment and human health: Evidence from nine landfill sites in northern China, Sci. Total Environ., 839(2022), art. No. 156269. doi: 10.1016/j.scitotenv.2022.156269
|
[3] |
B. Guo, Y.J. Peng, and R. Espinosa-Gomez, Cyanide chemistry and its effect on mineral flotation, Miner. Eng., 66-68(2014), p. 25. doi: 10.1016/j.mineng.2014.06.010
|
[4] |
W.W. Han, H.Y. Yang, and L.L. Tong, Cyanide removal for ultrafine gold cyanide residues by chemical oxidation methods, Trans. Nonferrous Met. Soc. China, 32(2022), No. 12, p. 4129. doi: 10.1016/S1003-6326(22)66083-7
|
[5] |
C.H. Zhao, D.W. Huang, J.H. Chen, Y.Q. Li, Y. Chen, and W.Z. Li, The interaction of cyanide with pyrite, marcasite and pyrrhotite, Miner. Eng., 95(2016), p. 131. doi: 10.1016/j.mineng.2016.03.015
|
[6] |
C. Anning, J.X. Wang, P. Chen, I. Batmunkh, and X.J. Lyu, Determination and detoxification of cyanide in gold mine tailings: A review, Waste Manage. Res., 37(2019), No. 11, p. 1117. doi: 10.1177/0734242X19876691
|
[7] |
N. Kuyucak and A. Akcil, Cyanide and removal options from effluents in gold mining and metallurgical processes, Miner. Eng., 50-51(2013), p. 13. doi: 10.1016/j.mineng.2013.05.027
|
[8] |
A. Akcil, Destruction of cyanide in gold mill effluents: Biological versus chemical treatments, Biotechnol. Adv., 21(2003), No. 6, p. 501. doi: 10.1016/S0734-9750(03)00099-5
|
[9] |
Q. Xiong, S.J. Jiang, R. Fang, et al., An environmental-friendly approach to remove cyanide in gold smelting pulp by chlorination aided and corncob biochar: Performance and mechanisms, J. Hazard. Mater., 408(2021), art. No. 124465. doi: 10.1016/j.jhazmat.2020.124465
|
[10] |
M. Kitis, A. Akcil, E. Karakaya, and N.O. Yigit, Destruction of cyanide by hydrogen peroxide in tailings slurries from low bearing sulphidic gold ores, Miner. Eng., 18(2005), No. 3, p. 353. doi: 10.1016/j.mineng.2004.06.003
|
[11] |
F. Barriga-Ordonez, F. Nava-Alonso, and A. Uribe-Salas, Cyanide oxidation by ozone in a steady-state flow bubble column, Miner. Eng., 19(2006), No. 2, p. 117. doi: 10.1016/j.mineng.2005.09.001
|
[12] |
D. Hewitt, P. Breuer, and C. Jeffery, Cyanide detoxification of gold cyanidation tails and process streams, Miner. Process. Extr. Metall., 121(2012), No. 4, p. 228.
|
[13] |
P.L. Breuer and D.M. Hewitt, INCO Cyanide destruction insights from plant reviews and laboratory evaluations, Miner. Process. Extr. Metall., 129(2020), No. 1, p. 104. doi: 10.1179/1743285512Y.0000000020
|
[14] |
China Gold Association, T/CGA 013–2019: Method for Chemical Analysis of Cyanide Leaching Residue in Gold Industry⎯Determination of Cyanide Titration and Spectrophotometry Method, 2019.
|
[15] |
Ministry of Environmental Protection of the People’s Republic of China, HJ 484–2009: Water Quality⎯Determination of Cyanide⎯Volumetric and Spectrophotometry Method, 2009.
|
[16] |
Y.B. Li, Y. Peng, Z.L. Wei, X. Yang, and A.R. Gerson, Crystal face-dependent pyrite oxidation: An electrochemical study, Appl. Surf. Sci., 619(2023), art. No. 156687. doi: 10.1016/j.apsusc.2023.156687
|
[17] |
B. Guo, Y.J. Peng, and G. Parker, Electrochemical and spectroscopic studies of pyrite–cyanide interactions in relation to the depression of pyrite flotation, Miner. Eng., 92(2016), p. 78. doi: 10.1016/j.mineng.2016.03.003
|
[18] |
A.M. Raichur, X.H. Wang, and B.K. Parekh, Quantifying pyrite surface oxidation kinetics by contact angle measurements, Colloids Surf. A: Physicochem. Eng. Aspects, 167(2000), No. 3, p. 245. doi: 10.1016/S0927-7757(99)00512-9
|
[19] |
X.M. Qiu, H.Y. Yang, G.B. Chen, L.L. Tong, Z.N. Jin, and Q. Zhang, Interface behavior of chalcopyrite during flotation from cyanide tailings, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 439. doi: 10.1007/s12613-020-2170-5
|
[20] |
R. Fattahi, M. Lashkarbolooki, R. Abedini, and H. Younesi, Analysis of the interfacial tension of cationic imidazolium-based ionic liquid, twin-branched tailed anionic surfactant, and a non-ionic emulsifier in the presence of SiO2 nanoparticle and amphiphilic oleic components using response surface method, J. Mol. Liq., 381(2023), art. No. 121799. doi: 10.1016/j.molliq.2023.121799
|
[21] |
H.H. Xue, J.Y. Li, G.B. Zhang, M. Li, B.S. Liu, and C.L. Kang, Hydroxyl radical dominated ibuprofen degradation by UV/percarbonate process: Response surface methodology optimization, toxicity, and cost evaluation, Chemosphere, 329(2023), art. No. 138681. doi: 10.1016/j.chemosphere.2023.138681
|
[22] |
R.V. Muralidhar, R.R. Chirumamila, R. Marchant, and P. Nigam, A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources, Biochem. Eng. J., 9(2001), No. 1, p. 17. doi: 10.1016/S1369-703X(01)00117-6
|
[23] |
Q.F. Zhao, H.Y. Yang, L.L. Tong, R.P. Jin, and P.C. Ma, Understanding the effect of grinding media on the adsorption mechanism of cyanide to chalcopyrite surface by ToF–SIMS, XPS, contact angle, zeta potential and flotation, Colloids Surf. A: Physicochem. Eng. Aspects, 644(2022), art. No. 128799. doi: 10.1016/j.colsurfa.2022.128799
|
[24] |
Y.F. Mu, L.Q. Li, and Y.J. Peng, Surface properties of fractured and polished pyrite in relation to flotation, Miner. Eng., 101(2017), p. 10. doi: 10.1016/j.mineng.2016.11.012
|
[25] |
X.L. Zhang, Y.X. Han, P. Gao, Y.J. Li, and Y.S. Sun, Effects of particle size and ferric hydroxo complex produced by different grinding media on the flotation kinetics of pyrite, Powder Technol., 360(2020), p. 1028. doi: 10.1016/j.powtec.2019.11.014
|
[26] |
M. Cheng, Y. Liu, D.L. Huang, et al., Prussian blue analogue derived magnetic Cu–Fe oxide as a recyclable photo-Fenton catalyst for the efficient removal of sulfamethazine at near neutral pH values, Chem. Eng. J., 362(2019), p. 865. doi: 10.1016/j.cej.2019.01.101
|
[27] |
Q.M. Nie, M.Y. Wang, T.S. Qiu, and X.H. Qiu, Density functional theory and XPS studies of the adsorption of cyanide on chalcopyrite surfaces, ACS Omega, 5(2020), No. 36, p. 22778. doi: 10.1021/acsomega.0c01739
|
[28] |
G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite, Sep. Purif. Technol., 240(2020), art. No. 116650. doi: 10.1016/j.seppur.2020.116650
|
[29] |
M. Ejtemaei and A.V. Nguyen, Characterisation of sphalerite and pyrite surfaces activated by copper sulphate, Miner. Eng., 100(2017), p. 223. doi: 10.1016/j.mineng.2016.11.005
|
[30] |
Y.F. Cai, Y.G. Pan, J.Y. Xue, Q.F. Sun, G.Z. Su, and X. Li, Comparative XPS study between experimentally and naturally weathered pyrites, Appl. Surf. Sci., 255(2009), No. 21, p. 8750. doi: 10.1016/j.apsusc.2009.06.028
|
[31] |
S. Qiu, Z.P. Guo, Q. Zheng, and B. Yan, Treatment of cyanide tailing slurry by Na2S2O5–air method, Nonferrous Met. Extr. Metal., 12(2015), p. 59.
|
[32] |
Y.B. Tu, P.W. Han, L.Q. Wei, et al., Removal of cyanide adsorbed on pyrite by H2O2 oxidation under alkaline conditions, J. Environ. Sci., 78(2019), p. 287. doi: 10.1016/j.jes.2018.10.013
|