Cite this article as:

Xiaoli Su, Diyuan Li, Junjie Zhao, Mimi Wang, Xing Su, and Aohui Zhou, Numerical simulation of microwave-induced cracking and melting of granite based on mineral microscopic models, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp.1512-1524. https://dx.doi.org/10.1007/s12613-023-2821-4
Xiaoli Su, Diyuan Li, Junjie Zhao, Mimi Wang, Xing Su, and Aohui Zhou, Numerical simulation of microwave-induced cracking and melting of granite based on mineral microscopic models, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp.1512-1524. https://dx.doi.org/10.1007/s12613-023-2821-4
引用本文 PDF XML SpringerLink

基于矿物微观结构模型的微波诱导花岗岩开裂及熔化数值模拟研究

摘要: 本研究提出了一种基于花岗岩矿物微观结构的电磁-热-力耦合模型,揭示了微波辐射下多矿物花岗岩的微观开裂机制及矿物熔化规律。室内微波加热实验验证了该模型的合理性。基于微波加热的多场耦合数值模拟显示:不均匀的温度梯度导致花岗岩断裂表面形成了熔化、多孔和非熔化区。矿物间的热膨胀系数和杨氏模量差异导致了矿物边界处产生了显著的热应力。由于较高的热膨胀系数,石英和黑云母受到了压缩作用,而具有较小的热膨胀系数的斜长石则受到拉伸应力。在熔化区域,石英经历α–β相变而产生了穿晶裂纹。花岗岩内部的局部高温还引发了黑云母和长石的熔化相变。这一数值模拟研究为微波照射下岩石内部热应力分布和矿物相变提供了新的认识。

 

Numerical simulation of microwave-induced cracking and melting of granite based on mineral microscopic models

Abstract: This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation. Experimental tests validate the rationality of the proposed model. Embedding microscopic mineral sections into the granite model for simulation shows that uneven temperature gradients create distinct molten, porous, and nonmolten zones on the fracture surface. Moreover, the varying thermal expansion coefficients and Young’s moduli among the minerals induce significant thermal stress at the mineral boundaries. Quartz and biotite with higher thermal expansion coefficients are subjected to compression, whereas plagioclase with smaller coefficients experiences tensile stress. In the molten zone, quartz undergoes transgranular cracking due to the α–β phase transition. The local high temperatures also induce melting phase transitions in biotite and feldspar. This numerical study provides new insights into the distribution of thermal stress and mineral phase changes in rocks under microwave irradiation.

 

/

返回文章
返回