留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 5
May  2024

图(10)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  751
  • HTML全文浏览量:  337
  • PDF下载量:  48
  • 被引次数: 0
Yarong Xue, Xueqiu He, Dazhao Song, Zhenlei Li, Majid Khan, Taoping Zhong, and Fei Yang, Energy evolution and structural health monitoring of coal under different failure modes: An experimental study, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 917-928. https://doi.org/10.1007/s12613-024-2822-y
Cite this article as:
Yarong Xue, Xueqiu He, Dazhao Song, Zhenlei Li, Majid Khan, Taoping Zhong, and Fei Yang, Energy evolution and structural health monitoring of coal under different failure modes: An experimental study, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 917-928. https://doi.org/10.1007/s12613-024-2822-y
引用本文 PDF XML SpringerLink
研究论文

不同破坏方式下煤岩能量演化过程与结构健康监测研究



  • 通讯作者:

    何学秋    E-mail: hexq@ustb.edu.cn

文章亮点

  • (1)系统研究了不同破坏方式下煤岩试样的能量演化规律
  • (2)总结了能量参数在煤受载各阶段的变化特征及不同破坏方式对其的影响
  • (3)提出了基于能量耗散的煤岩结构健康监测预警方法
  • 地下工程结构失稳诱发的煤岩动力灾害严重威胁着井下相关人员的生命和财产安全,建立及时、准确的煤岩体健康状态监测方法至关重要。为了揭示地下复杂工况下煤岩体受载破坏过程的能量演化规律,在实验室条件下对煤岩试样进行了剪切、劈裂和单轴压缩实验,研究了能量参数在受载各阶段的变化特征及不同破坏方式对其的影响,在此基础上构建了基于能量耗散的煤岩结构健康评价新方法。结果表明,煤岩受载过程中其内部应变硬化与应变软化机制相互转化,对应弹性能与耗散能密度增长速率的波动;当张拉破坏占煤岩破坏方式主体时,能量在峰前表现出“高耗散、低积聚”的特点,而当剪切破坏占主体时则表现出“高积聚、低耗散”的特点;同时,不同破坏方式下煤岩失稳前耗散能均出现了加速增长的特征,并且能量耗散率与试样所处应力状态存在显著正相关关系;最后,采用数理统计方法建立了能量耗散异常指数 W,将煤岩结构的健康状况分为弱、中、强三个危险等级并提出了量化的分级标准,该方法对于不同破坏方式下的煤岩失稳具有统一的预警准则,针对地下工程复杂工况下煤岩体的结构健康监测具有适应性,可以有效反映煤岩的应力分布状态和结构稳定性。研究为旨在推动地下工程结构健康监测技术的升级与创新,为矿井智能化发展提供支撑。
  • Research Article

    Energy evolution and structural health monitoring of coal under different failure modes: An experimental study

    + Author Affiliations
    • Structural instability in underground engineering, especially in coal–rock structures, poses significant safety risks. Thus, the development of an accurate monitoring method for the health of coal–rock bodies is crucial. The focus of this work is on understanding energy evolution patterns in coal–rock bodies under complex conditions by using shear, splitting, and uniaxial compression tests. We examine the changes in energy parameters during various loading stages and the effects of various failure modes, resulting in an innovative energy dissipation-based health evaluation technique for coal. Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading, indicated by fluctuations in elastic energy and dissipation energy density. For tensile failure, the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress. On the other hand, shear failure is described by “high accumulation and low dissipation” in energy trends. Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization, and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples. A novel mathematical and statistical approach is developed, establishing a dissipation energy anomaly index, W, which categorizes the structural health of coal into different danger levels. This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments, contributing to the development of structural health monitoring technology.
    • loading
    • Supplementary Information-s12613-024-2822-y.docx
    • [1]
      P. Xu, R.S. Yang, J.J. Zuo, et al., Research progress of the fundamental theory and technology of rock blasting, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 705. doi: 10.1007/s12613-022-2464-x
      [2]
      M. Wu, Y.C. Ye, Q.H. Wang, and N.Y. Hu, Development of rockburst research: A comprehensive review, Appl. Sci., 12(2022), No. 3, art. No. 974. doi: 10.3390/app12030974
      [3]
      S.Q. He, D.Z. Song, X.Q. He, et al., Coupled mechanism of compression and prying-induced rock burst in steeply inclined coal seams and principles for its prevention, Tunnelling Underground Space Technol., 98(2020), art. No. 103327. doi: 10.1016/j.tust.2020.103327
      [4]
      X.Q. He, C. Zhou, D.Z. Song, et al., Mechanism and monitoring and early warning technology for rockburst in coal mines, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1097. doi: 10.1007/s12613-021-2267-5
      [5]
      Y.K. Ma, B.S. Nie, X.Q. He, X.C. Li, J.Q. Meng, and D.Z. Song, Mechanism investigation on coal and gas outburst: An overview, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 872. doi: 10.1007/s12613-019-1956-9
      [6]
      H.P. Xie, L.Y. Li, R.D. Peng, and Y. Ju, Energy analysis and criteria for structural failure of rocks, J. Rock Mech. Geotech. Eng., 1(2009), No. 1, p. 11. doi: 10.3724/SP.J.1235.2009.00011
      [7]
      H.P. Xie, Y. Ju, L.Y. Li, and R.D. Peng, Energy mechanism of deformation and failure of rock masses, Chin. J. Rock Mech. Eng., 27(2008), No. 9, p. 1729.
      [8]
      H.P. Xie, R.D. Peng, Y. Ju, and H.W. Zhou, On energy analysis of rock failure, Chin. J. Rock Mech. Eng., 24(2005), No. 15, p. 2603.
      [9]
      H.P. Xie, Y. Ju, and L.Y. Li, Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles, Chin. J. Rock Mech. Eng., 24(2005), No. 17, p. 3003.
      [10]
      H.P. Xie, R.D. Peng, and Y. Ju, Energy dissipation of rock deformation and fracture, Chin. J. Rock Mech. Eng., 23(2004), No. 21, p. 3565.
      [11]
      F.Q. Gong, J.Y. Yan, S. Luo, and X.B. Li, Investigation on the linear energy storage and dissipation laws of rock materials under uniaxial compression, Rock Mech. Rock Eng., 52(2019), No. 11, p. 4237. doi: 10.1007/s00603-019-01842-4
      [12]
      F.Q. Gong, J.Y. Yan, X.B. Li, and S. Luo, A peak-strength strain energy storage index for rock burst proneness of rock materials, Int. J. Rock Mech. Min. Sci., 117(2019), p. 76. doi: 10.1016/j.ijrmms.2019.03.020
      [13]
      Z.Q. Chen, C. He, G.Y. Ma, G.W. Xu, and C.C. Ma, Energy damage evolution mechanism of rock and its application to brittleness evaluation, Rock Mech. Rock Eng., 52(2019), No. 4, p. 1265. doi: 10.1007/s00603-018-1681-0
      [14]
      D.Y. Li, Z. Sun, T. Xie, X.B. Li, and P.G. Ranjith, Energy evolution characteristics of hard rock during triaxial failure with different loading and unloading paths, Eng. Geol., 228(2017), p. 270. doi: 10.1016/j.enggeo.2017.08.006
      [15]
      B.Q. Cui, G.R. Feng, J.W. Bai, et al., Failure characteristics and the damage evolution of a composite bearing structure in pillar-side cemented paste backfilling, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1524. doi: 10.1007/s12613-022-2545-x
      [16]
      Y.D. Jiang, H.T. Li, Y.X. Zhao, and K. Zhou, Effect of loading rate on energy accumulation and dissipation in rocks, J. China Univ. Min. Technol., 43(2014), No. 3, p. 369.
      [17]
      W.B. Shen, W.J. Yu, B. Pan, and K. Li, Rock mechanical failure characteristics and energy evolution analysis of coal-rock combination with different dip angles, Arabian. J. Geosci., 15(2022), No. 1, art. No. 93. doi: 10.1007/s12517-021-09268-5
      [18]
      L. Gao, F. Gao, Z.Z. Zhang, and Y. Xing, Research on the energy evolution characteristics and the failure intensity of rocks, Int. J. Min. Sci. Technol., 30(2020), No. 5, p. 705. doi: 10.1016/j.ijmst.2020.06.006
      [19]
      P. Li, M.F. Cai, P.T. Wang, Q.F. Guo, S.J. Miao, and F.H. Ren, Mechanical properties and energy evolution of jointed rock specimens containing an opening under uniaxial loading, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1875. doi: 10.1007/s12613-020-2237-3
      [20]
      G.B. Chen, J.W. Zhang, Y.L. He, G.H. Zhang, and T. Li, Derivation of pre-peak energy distribution formula and energy accumulation tests of coal-rock combined body, Rock Soil Mech., 43(2022), Suppl. 2, p. 130.
      [21]
      X.C. Xiao, Y.F. Fan, D. Wu, X. Ding, L. Wang, and B.Y. Zhao, Energy dissipation feature and rock burst risk assessment in coal-rock combinations, Rock Soil Mech., 40(2019), No. 11, p. 4203.
      [22]
      A.W. Wang, Q.S. Gao, Y.S. Pan, Y.M. Song, and L. Li, Bursting liability and energy dissipation laws of prefabricated borehole coal samples, J. China Coal Soc., 46(2021), No. 3, p. 959.
      [23]
      H. Yu, S.W. Liu, H.S. Jia, and S.L. Wang, Mechanical response and energy dissipation mechanism of closed single fractured sandstone under different confining pressures, J. Min. Saf. Eng., 37(2020), No. 2, p. 385.
      [24]
      P. Wang, J.Y. Xu, X.Y. Fang, and P.X. Wang, Energy dissipation and damage evolution analyses for the dynamic compression failure process of red-sandstone after freeze-thaw cycles, Eng. Geol., 221(2017), p. 104. doi: 10.1016/j.enggeo.2017.02.025
      [25]
      S. Yin, D.Z. Song, X.Q. He, et al., Structural health monitoring of building rock based on stress drop and acoustic-electric energy release, Struct. Control Health Monit., 29(2022), No. 2, art. No. e2875.
      [26]
      J.G. Ning, J. Wang, J.Q. Jiang, S.C. Hu, L.S. Jiang, and X.S. Liu, Estimation of crack initiation and propagation thresholds of confined brittle coal specimens based on energy dissipation theory, Rock Mech. Rock Eng., 51(2018), No. 1, p. 119. doi: 10.1007/s00603-017-1317-9
      [27]
      Q.F. Ma, Z.H. Liu, Y.P. Qin, T.H. Jing, and S.L. Wang, Rock plastic-damage constitutive model based on energy dissipation, Rock Soil Mech., 42(2021), art. No. 1210.
      [28]
      F.Q. Gong, Y.L. Wang, Z.G. Wang, J.F. Pan, and S. Luo, A new criterion of coal burst proneness based on the residual elastic energy index, Int. J. Min. Sci. Technol., 31(2021), No. 4, p. 553. doi: 10.1016/j.ijmst.2021.04.001
      [29]
      F.Q. Gong, Y.L. Wang, and S. Luo, Rockburst proneness criteria for rock materials: Review and new insights, J. Cent. South Univ., 27(2020), No. 10, p. 2793. doi: 10.1007/s11771-020-4511-y
      [30]
      Z.Z. Zhang and F. Gao, Experimental investigation on the energy evolution of dry and water-saturated red sandstones, Int. J. Min. Sci. Technol., 25(2015), No. 3, p. 383. doi: 10.1016/j.ijmst.2015.03.009
      [31]
      D.Z. Song, E.Y. Wang, and J. Liu, Relationship between EMR and dissipated energy of coal rock mass during cyclic loading process, Saf. Sci., 50(2012), No. 4, p. 751. doi: 10.1016/j.ssci.2011.08.039
      [32]
      R. Solecki and R.J. Conant, Advanced Mechanics of Materials, Oxford University Press, London, 2003.
      [33]
      M.H. Wei, D.Z. Song, X.Q. He, Q. Lou, L.M. Qiu, and Z.L. Li, Characteristics of electromagnetic vector field generated from rock fracturing, J. Rock Mech. Geotech. Eng., 15(2023), No. 2, p. 457. doi: 10.1016/j.jrmge.2022.07.002
      [34]
      S. Yin, D.Z. Song, X.Q. He, et al., Time-frequency evolution law and generation mechanism of electromagnetic radiation in coal friction process, Eng. Geol., 294(2021), art. No. 106377. doi: 10.1016/j.enggeo.2021.106377
      [35]
      H.L. Wang, D.Z. Song, Z.L. Li, X.Q. He, S.R. Lan, and H.F. Guo, Acoustic emission characteristics of coal failure using automatic speech recognition methodology analysis, Int. J. Rock Mech. Min. Sci., 136(2020), art. No. 104472. doi: 10.1016/j.ijrmms.2020.104472
      [36]
      D.Z. Song, X.Q. He, E.Y. Wang, Z.L. Li, and J. Liu, Rockburst Evolutionary Process and Energy Dissipation Characteristics, Springer, Singapore, 2020.
      [37]
      G. Lacidogna, F. Accornero, and A. Carpinteri, Influence of snap-back instabilities on Acoustic Emission damage monitoring, Eng. Fract. Mech., 210(2019), p. 3.

    Catalog


    • /

      返回文章
      返回