Cite this article as:

Zihan Hou, Lisheng Guo, Xianlong Fu, Hongxian Zheng, Yuqing Dai, Zhixing Wang, Hui Duan, Mingxia Dong, Wenjie Peng, Guochun Yan, and Jiexi Wang, Spray pyrolysis feasibility of tungsten substitution for cobalt in nickel-rich cathode materials, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp.2244-2252. https://dx.doi.org/10.1007/s12613-024-2824-9
Zihan Hou, Lisheng Guo, Xianlong Fu, Hongxian Zheng, Yuqing Dai, Zhixing Wang, Hui Duan, Mingxia Dong, Wenjie Peng, Guochun Yan, and Jiexi Wang, Spray pyrolysis feasibility of tungsten substitution for cobalt in nickel-rich cathode materials, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp.2244-2252. https://dx.doi.org/10.1007/s12613-024-2824-9
引用本文 PDF XML SpringerLink

喷雾热解法制备钨替代钴的高镍正极材料

摘要: 钴在高容量高镍正极材料中起着稳定晶格结构的作用。然而,其高昂的成本和毒性仍然限制了其后续发展。通常可以通过过渡金属置换以降低Co含量。然而由于各元素浓度和沉积速率存在差异,传统共沉淀法无法满足多元素共沉淀和元素均匀分布的要求。本文使用喷雾热解法制备LiNi0.9Co0.1−xWxO2 (LNCW),并且分析了偏钨酸铵的热解行为与W替代Co的可行性。所得含Ni−Co−W的氧化物前驱体元素分布均匀,有利于W在最终材料中的均匀替代。随着W的替代,材料一次颗粒尺寸从338.06 nm减小到71.76 nm,锂镍混排程度最低低至3.34%。表现出显著改善的电化学性能。优化条件下,LiNi0.9Co0.0925W0.0075O2在200次循环后的容量保持率高达82.7%。这项工作表明,W可以在一定程度上弥补钴缺乏造成的损失。

 

Spray pyrolysis feasibility of tungsten substitution for cobalt in nickel-rich cathode materials

Abstract: Cobalt (Co) serves as a stabilizer in the lattice structure of high-capacity nickel (Ni)-rich cathode materials. However, its high cost and toxicity still limit its development. In general, it is possible to perform transition metal substitution to reduce the Co content. However, the traditional coprecipitation method cannot satisfy the requirements of multielement coprecipitation and uniform distribution of elements due to the differences between element concentration and deposition rate. In this work, spray pyrolysis was used to prepare LiNi0.9Co0.1−xWxO2 (LNCW). In this regard, the pyrolysis behavior of ammonium metatungstate was analyzed, together with the substitution of W for Co. With the possibility of spray pyrolysis, the Ni–Co–W-containing oxide precursor presents a homogeneous distribution of metal elements, which is beneficial for the uniform substitution of W in the final materials. It was observed that with W substitution, the size of primary particles decreased from 338.06 to 71.76 nm, and cation disordering was as low as 3.34%. As a consequence, the prepared LNCW exhibited significantly improved electrochemical performance. Under optimal conditions, the lithium-ion battery assembled with LiNi0.9Co0.0925W0.0075O2 (LNCW-0.75mol%) had an improved capacity retention of 82.7% after 200 cycles, which provides insight into the development of Ni-rich low-Co materials. This work presents that W can compensate for the loss caused by Co deficiency to a certain extent.

 

/

返回文章
返回