Cite this article as:

Dengfeng Zhao, Shiyu Zhang, and Yingliang Zhao, Recycling arsenic-containing bio-leaching residue after thermal treatment in cemented paste backfill: Structure modification, binder properties and environmental assessment, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp.2136-2147. https://dx.doi.org/10.1007/s12613-024-2825-8
Dengfeng Zhao, Shiyu Zhang, and Yingliang Zhao, Recycling arsenic-containing bio-leaching residue after thermal treatment in cemented paste backfill: Structure modification, binder properties and environmental assessment, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp.2136-2147. https://dx.doi.org/10.1007/s12613-024-2825-8
引用本文 PDF XML SpringerLink

含砷生物浸出渣热处理后在膏体充填体中的应用研究:结构改性、胶凝性能和环境评价

摘要: 含砷生物浸出残渣中存在的大量砷,由于其固有的不稳定性和对浸出的敏感性而引起不可忽视的环境问题。鉴于含砷生物浸出残渣含有丰富的硫酸钙,其表现出较好的工业应用前景。本研究深入探讨了利用含砷生物浸出残渣作为硫酸盐的来源生产超硫酸化水泥的可行性,为水泥浆胶结膏体充填体研制一种新型的胶凝材料。在150、350、600和800°C等温度下对含砷生物浸出残渣进行热处理,以改变其性能。分析含砷生物浸出残渣内含砷的矿物相变及其化学成分的变化。随后,研究了利用含砷生物浸出残渣制备超硫酸化水泥的水化特性,包括反应动力学、凝结时间、强度演化和微观结构。试验结果表明,热处理改变了含砷生物浸出残渣中硫酸钙的结构,从而影响了所制备水泥的性能。值得注意的是,在600°C下煅烧热处理对早期和长期强度都表现出较好的改性效果。这主要归因于胶凝体系水化反应产物的增加和致密微观结构的形成。此外,热处理引起的含砷生物浸出残渣中化学元素砷的改性对制备的胶凝材料的砷固定能力影响有限。

 

Recycling arsenic-containing bio-leaching residue after thermal treatment in cemented paste backfill: Structure modification, binder properties and environmental assessment

Abstract: The substantial arsenic (As) content present in arsenic-containing bio-leaching residue (ABR) presents noteworthy environmental challenges attributable to its inherent instability and susceptibility to leaching. Given its elevated calcium sulfate content, ABR exhibits considerable promise for industrial applications. This study delved into the feasibility of utilizing ABR as a source of sulfates for producing super sulfated cement (SSC), offering an innovative binder for cemented paste backfill (CPB). Thermal treatment at varying temperatures of 150, 350, 600, and 800°C was employed to modify ABR’s performance. The investigation encompassed the examination of phase transformations and alterations in the chemical composition of As within ABR. Subsequently, the hydration characteristics of SSC utilizing ABR, with or without thermal treatment, were studied, encompassing reaction kinetics, setting time, strength development, and microstructure. The findings revealed that thermal treatment changed the calcium sulfate structure in ABR, consequently impacting the resultant sample performance. Notably, calcination at 600°C demonstrated optimal modification effects on both early and long-term strength attributes. This enhanced performance can be attributed to the augmented formation of reaction products and a densified microstructure. Furthermore, the thermal treatment elicited modifications in the chemical As fractions within ABR, with limited impact on the As immobilization capacity of the prepared binders.

 

/

返回文章
返回