留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 7
Jul.  2024

图(12)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1473
  • HTML全文浏览量:  171
  • PDF下载量:  48
  • 被引次数: 0
Yong Wang, Wei Wang, Joo Hyun Park, and Wangzhong Mu, Effect of hafnium and molybdenum addition on inclusion characteristics in Co-based dual-phase high-entropy alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1639-1650. https://doi.org/10.1007/s12613-024-2831-x
Cite this article as:
Yong Wang, Wei Wang, Joo Hyun Park, and Wangzhong Mu, Effect of hafnium and molybdenum addition on inclusion characteristics in Co-based dual-phase high-entropy alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1639-1650. https://doi.org/10.1007/s12613-024-2831-x
引用本文 PDF XML SpringerLink
研究论文Open Access

添加铪、钼对钴基双相高熵合金夹杂物特性的影响




  • 通讯作者:

    王嵬    E-mail: wei6@kth.se

    牟望重    E-mail: wmu@kth.se

文章亮点

  • (1) 系统地表征了添加Hf、Mo双相高熵合金中夹杂物特性。
  • (2) 分析了双相高熵合金中合金元素诱导夹杂物转变热力学机理。
  • (3) 总结了高熵合金中不同类别夹杂物聚合长大动力学与合金热物性参数相关性机理。
  • 具有优异力学性能的特定等级高熵合金(HEAs)可以在高温等极端环境下进行服役。在本研究中,选择化学成分为Co47.5Cr30Fe7.5Mn7.5Ni7.5 (at%)的基于钴的高熵合金作为研究对象,同时添加1.5at%铪(Hf)与钼(Mo)元素到高熵合金中,鉴于其在高温性能上的优异性能。分别采用二维截面法以及三维电解提提取夹杂物并进行全面的分析。研究结果表明,添加Hf可以减少Al2O3夹杂物的生产,并形成更稳定的富含Hf的氧化物(比如HfO2);Mo的添加不会影响夹杂物的类型,但可以通过影响HEA熔体的热物性参数来影响夹杂物的尺寸、力度分布等特征。在实验研究的基础上进行了理论计算,结果表明 Al2O3夹杂物的聚合系数和碰撞频率均高于HfO2夹杂物,但本研究结果表明,夹杂物的数量对HfO2和Al2O3的聚合行为起着更大的作用。HEA中形成夹杂物的类别主要决定于合金中的活性元素,同时HEA中的杂质水平(比如O、S)和活性元素是影响夹杂物形成的关键因素。
  • Research ArticleOpen Access

    Effect of hafnium and molybdenum addition on inclusion characteristics in Co-based dual-phase high-entropy alloys

    + Author Affiliations
    • Specific grades of high-entropy alloys (HEAs) can provide opportunities for optimizing properties toward high-temperature applications. In this work, the Co-based HEA with a chemical composition of Co47.5Cr30Fe7.5Mn7.5Ni7.5 (at%) was chosen. The refractory metallic elements hafnium (Hf) and molybdenum (Mo) were added in small amounts (1.5at%) because of their well-known positive effects on high-temperature properties. Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method. The results revealed that the addition of Hf can reduce Al2O3 inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase. Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt. The calculated coagulation coefficient and collision rate of Al2O3 inclusions were higher than those of HfO2 inclusions, but the inclusion amount played a larger role in the agglomeration behavior of HfO2 and Al2O3 inclusions. The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation.
    • loading
    • [1]
      D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. doi: 10.1016/j.actamat.2016.08.081
      [2]
      Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389. doi: 10.1007/s12613-021-2373-4
      [3]
      Y.Q. Wu, P.K. Liaw, R.X. Li, et al., Relationship between the unique microstructures and behaviors of high-entropy alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1350. doi: 10.1007/s12613-023-2777-4
      [4]
      P.J. Shi, W.L. Ren, T.X. Zheng, et al., Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat. Commun., 10(2019), No. 1, art. No. 489. doi: 10.1038/s41467-019-08460-2
      [5]
      Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature, 534(2016), No. 7606, p. 227. doi: 10.1038/nature17981
      [6]
      Y. Zhang, M. Zhang, D.Y. Li, et al., Compositional design of soft magnetic high entropy alloys by minimizing magnetostriction coefficient in (Fe0.3Co0.5Ni0.2)100− x(Al1/3Si2/3) x system, Metals, 9(2019), No. 3, art. No. 382.
      [7]
      M. Zhang, J.X. Hou, H.J. Yang, et al., Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1341. doi: 10.1007/s12613-020-2084-2
      [8]
      W. Wang, Z.Y. Hou, R. Lizárraga, et al., An experimental and theoretical study of duplex fcc+hcp cobalt based entropic alloys, Acta Mater., 176(2019), p. 11. doi: 10.1016/j.actamat.2019.06.041
      [9]
      W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics, 60(2015), p. 1. doi: 10.1016/j.intermet.2015.01.004
      [10]
      T.T. Shun, L.Y. Chang, and M.H. Shiu, Microstructures and mechanical properties of multiprincipal component CoCrFeNiTi x alloys, Mater. Sci. Eng. A, 556(2012), p. 170. doi: 10.1016/j.msea.2012.06.075
      [11]
      H. Ren, R.R. Chen, X.F. Gao, et al., Phase formation and mechanical features in (AlCoCrFeNi)100− xHf x high-entropy alloys: The role of Hf, Mater. Sci. Eng. A, 858(2022), art. No. 144156. doi: 10.1016/j.msea.2022.144156
      [12]
      T.T. Shun, L.Y. Chang, and M.H. Shiu, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMo x alloys, Mater. Charact., 70(2012), p. 63. doi: 10.1016/j.matchar.2012.05.005
      [13]
      S. Haas, A.M. Manzoni, F. Krieg, and U. Glatzel, Microstructure and mechanical properties of precipitate strengthened high entropy alloy Al10Co25Cr8Fe15Ni36Ti6 with additions of hafnium and molybdenum, Entropy, 21(2019), No. 2, art. No. 169. doi: 10.3390/e21020169
      [14]
      A. Gali and E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics, 39(2013), p. 74. doi: 10.1016/j.intermet.2013.03.018
      [15]
      F. Otto, N.L. Hanold, and E.P. George, Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries, Intermetallics, 54(2014), p. 39. doi: 10.1016/j.intermet.2014.05.014
      [16]
      F. Otto, A. Dlouhý, K.G. Pradeep, et al., Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Mater., 112(2016), p. 40. doi: 10.1016/j.actamat.2016.04.005
      [17]
      B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(2014), No. 6201, p. 1153. doi: 10.1126/science.1254581
      [18]
      K.P. Yu, S.H. Feng, C. Ding, P. Yu, and M.X. Huang, Improving anti-corrosion properties of CoCrFeMnNi high entropy alloy by introducing Si into nonmetallic inclusions, Corros. Sci., 208(2022), art. No. 110616. doi: 10.1016/j.corsci.2022.110616
      [19]
      Y. Wang, Y.L. Li, W. Wang, et al., Effect of manufacturing conditions and Al addition on inclusion characteristics in Co-based dual-phase high entropy alloy, Metall. Mater. Trans. A, 54(2023), No. 7, p. 2715. doi: 10.1007/s11661-023-07049-1
      [20]
      G. Qin, R.R. Chen, H.T. Zheng, et al., Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition, J. Mater. Sci. Technol., 35(2019), No. 4, p. 578. doi: 10.1016/j.jmst.2018.10.009
      [21]
      L.M. Ma, X.X. Tang, L.N. Jia, S.N. Yuan, J.R. Ge, and H. Zhang, Influence of Hf contents on interactions between Nb-silicide based alloys and yttria moulds during directional solidification, Int. J. Refract. Met. Hard Mater., 33(2012), p. 87. doi: 10.1016/j.ijrmhm.2012.02.020
      [22]
      O. Benafan, G.S. Bigelow, A. Garg, R.D. Noebe, D.J. Gaydosh, and R.B. Rogers, Processing and scalability of NiTiHf high-temperature shape memory alloys, Shape Mem. Superelasticity, 7(2021), No. 1, p. 109. doi: 10.1007/s40830-020-00306-x
      [23]
      Y.Z. Zhou, A. Volek, and R.F. Singer, Influence of solidification conditions on the castability of nickel-base superalloy IN792, Metall. Mater. Trans. A, 36(2005), No. 3, p. 651. doi: 10.1007/s11661-005-0181-5
      [24]
      I.V. Belyaev, V.E. Bazhenov, A.V. Kireev, and A.V. Moiseev, Nonmetallic inclusions in a new alloy for single-crystal permanent magnets, Arch. Foundry Eng., 18(2018), No. 2, p. 11.
      [25]
      W. Wang, Y. Wang, W. Mu, et al., Inclusion engineering in Co-based duplex entropic alloys, Mater. Des., 210(2021), art. No. 110097. doi: 10.1016/j.matdes.2021.110097
      [26]
      C.L. Qiu and X.H. Wu, High cycle fatigue and fracture behaviour of a hot isostatically pressed nickel-based superalloy, Philos. Mag., 94(2014), No. 3, p. 242. doi: 10.1080/14786435.2013.852287
      [27]
      H. Ohta and H. Suito, Activities of MnO in CaO–SiO2–Al2O3–MnO (<10 Pct)–FetO(<3 pct) slags saturated with liquid iron, Metall. Mater. Trans. B, 26(1995), No. 2, p. 295. doi: 10.1007/BF02660972
      [28]
      Y. Haruna, Removal of Inclusions from Cast Superalloy Revert [Dissertation], University of British Columbia, Vancouver, 1994.
      [29]
      Y.Z. Luo, J.M. Zhang, Z.M. Liu, C. Xiao, and S.Z. Wu, In situ observation and thermodynamic calculation of MnS in 49MnVS3 non-quenched and tempered steel, Acta Metall. Sin. Engl. Lett., 24(2011), No. 4, p. 326.
      [30]
      T. Matsushita and K. Mukai, Chemical Thermodynamics in Materials Science : From Basics to Practical Applications, Springer, Singapore, 2018.
      [31]
      S.B. Rumyantseva, B.A. Rumyantsev, V.N. Simonov, G.S. Sprygin, and V.N. Kashirtsev, Optimum deoxidation of a Kh65NVFT chromium–nickel alloy containing refractory metals, Russ. Metall. Met., 2020(2020), No. 12, p. 1349. doi: 10.1134/S0036029520120174
      [32]
      S. Takaya, T. Furukawa, G. Müller, et al., Al-containing ODS steels with improved corrosion resistance to liquid lead–bismuth, J. Nucl. Mater., 428(2012), No. 1-3, p. 125. doi: 10.1016/j.jnucmat.2011.06.046
      [33]
      R. Filip, M. Zagula-Yavorska, M. Pytel, J. Romanowska, M. Maliniak, and J. Sieniawski, The oxidation resistance of nonmodified and Zr-modified aluminide coatings deposited by the CVD method, Solid State Phenom., 227(2015), p. 361. doi: 10.4028/www.scientific.net/SSP.227.361
      [34]
      H. Qian, The Effect of Processing Parameters on Structure Evolution during Laser Additive Manufacturing and Post-processing of Niobium-Silicide Based Alloys [Dissertation], University of Leicester, Leicester, 2021.
      [35]
      M.L. Turpin and J.F. Elliott, Nucleation of oxide inclusions in iron melts, J. Iron. Steel. Inst., 204(1966), p. 217.
      [36]
      T. Gheno and B. Gleeson, Kinetics of Al2O3-scale growth by oxidation and dissolution in molten silicate, Oxid. Met., 87(2017), No. 3, p. 527.
      [37]
      J.A. Murdzek and S.M. George, Effect of crystallinity on thermal atomic layer etching of hafnium oxide, zirconium oxide, and hafnium zirconium oxide, J. Vac. Sci. Technol. A: Vac. Surf. Films, 38(2020), No. 2, art. No. 022608. doi: 10.1116/1.5135317
      [38]
      D.L. You, S.K. Michelic, G. Wieser, and C. Bernhard, Modeling of manganese sulfide formation during the solidification of steel, J. Mater. Sci., 52(2017), No. 3, p. 1797. doi: 10.1007/s10853-016-0470-y
      [39]
      D.L. You, S.K. Michelic, P. Presoly, J.H. Liu, and C. Bernhard, Modeling inclusion formation during solidification of steel: A review, Metals, 7(2017), No. 11, art. No. 460. doi: 10.3390/met7110460
      [40]
      N. Aritomi and K. Gunji, Morphology and formation mechanism of dendritic inclusions in iron and iron-nickel alloys deoxidized with silicon and solidified unidirectionally, ISIJ Int., 19(1979), No. 3, p. 152. doi: 10.2355/isijinternational1966.19.152
      [41]
      E. Steinmetz and H.U. Lindenberg, Morphology of inclusions during deoxidation (of Fe melts) with Al, Arch. Eisenhuttenwes., 47(1976), p. 199.
      [42]
      L.F. Zhang, S. Taniguchi, and K.K. Cai, Fluid flow and inclusion removal in continuous casting tundish, Metall. Mater. Trans. B, 31(2000), No. 2, p. 253. doi: 10.1007/s11663-000-0044-9
      [43]
      C.J. Xuan, A.V. Karasev, and P.G. Jönsson, Evaluation of agglomeration mechanisms of non-metallic inclusions and cluster characteristics produced by Ti/Al complex deoxidation in Fe-10mass% Ni alloy, ISIJ Int., 56(2016), No. 7, p. 1204. doi: 10.2355/isijinternational.ISIJINT-2016-030
      [44]
      W. Mu, N. Dogan, and K.S. Coley, Agglomeration of non-metallic inclusions at the steel/Ar interface: Model application, Metall. Mater. Trans. B, 48(2017), No. 4, p. 2092. doi: 10.1007/s11663-017-0998-5
      [45]
      O. Buiu, W. Davey, Y. Lu, I.Z. Mitrovic, and S. Hall, Ellipsometric analysis of mixed metal oxides thin films, Thin Solid Films, 517(2008), No. 1, p. 453. doi: 10.1016/j.tsf.2008.08.119
      [46]
      K.L. Chen, D.Y. Wang, D. Hou, T.P. Qu, J. Tian, and H.H. Wang, Effect of interfacial properties on agglomeration of inclusions in molten steels, ISIJ Int., 59(2019), No. 10, p. 1735. doi: 10.2355/isijinternational.ISIJINT-2019-053
      [47]
      K. Nakajima, W. Mu, and P.G. Jönsson, Assessment of a simplified correlation between wettability measurement and dispersion/coagulation potency of oxide particles in ferrous alloy melt, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2229. doi: 10.1007/s11663-019-01624-x
      [48]
      C.Y. Chain, R.A. Quille, and A.F. Pasquevich, Ball milling induced solid-state reactions in the La2O3–HfO2 ceramic system, J. Alloys Compd., 495(2010), No. 2, p. 524. doi: 10.1016/j.jallcom.2009.10.130
      [49]
      S. Kimura, K. Nakajima, and S. Mizoguchi, Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels, Metall. Mater. Trans. B, 32(2001), No. 1, p. 79. doi: 10.1007/s11663-001-0010-1
      [50]
      M. Söder, P. Jönsson, and L. Jonsson, Inclusion growth and removal in gas-stirred ladles, Steel Res. Int., 75(2004), No. 2, p. 128. doi: 10.1002/srin.200405938

    Catalog


    • /

      返回文章
      返回