Cite this article as:

Zhiliang Yang, Kang An, Yuchen Liu, Zhijian Guo, Siwu Shao, Jinlong Liu, Junjun Wei, Liangxian Chen, Lishu Wu, and Chengming Li, Edge effect during microwave plasma chemical vapor deposition diamond-film: Multiphysics simulation and experimental verification, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp.2287-2299. https://dx.doi.org/10.1007/s12613-024-2834-7
Zhiliang Yang, Kang An, Yuchen Liu, Zhijian Guo, Siwu Shao, Jinlong Liu, Junjun Wei, Liangxian Chen, Lishu Wu, and Chengming Li, Edge effect during microwave plasma chemical vapor deposition diamond-film: Multiphysics simulation and experimental verification, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp.2287-2299. https://dx.doi.org/10.1007/s12613-024-2834-7
引用本文 PDF XML SpringerLink

微波等离子体化学气相沉积金刚石膜过程中的边缘效应:多物理场仿真和实验验证

摘要: 金刚石膜在沉积过程的不均匀性严重限制了其后期的加工与应用,造成这种现象的原因之一就是所谓的“边缘效应”。本文旨在研究MPCVD沉积金刚石薄膜过程中的边缘效应。衬底凸起高度 \Delta h 作为影响边缘效应的重要因素被用以进行等离子体模拟及指导金刚石薄膜沉积实验。使用有限元软件 COMSOL Multiphysics构建了基于电子碰撞反应的多物理场(电磁场、等离子体场和流体传热场)耦合模型。实验性生长通过使用拉曼光谱和扫描电子显微镜进行表征提供了模型验证。研究表明,模拟结果再现了实验趋势。 \Delta h ( \Delta h = 0–3 mm)的增大加剧了衬底边缘的等离子体放电,电子密度 n_\mathrme 、H摩尔浓度 C_\mathrmH 、CH3摩尔浓度 C_\mathrmC\mathrmH_3 在边缘处倍增(对于 \Delta h = −1 mm的特殊下凹型样品,则表现为活性化学基团在衬底边缘处摩尔浓度的减小)。当 \Delta h = 0–3 mm时,实验中在衬底边缘处得到了更高的金刚石生长速率与更大的金刚石晶粒尺寸,其随 \Delta h 增大。薄膜厚度均匀性随 \Delta h 而降低。所有样品的Raman光谱都显示了位于1332 cm−1附近的金刚石一阶特征峰。当 \Delta h = −1 mm时,薄膜全部区域表现为拉应力。当 \Delta h = 0–3 mm时,薄膜全部区域表现为压应力。

 

Edge effect during microwave plasma chemical vapor deposition diamond-film: Multiphysics simulation and experimental verification

Abstract: This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor deposition. Substrate bulge height \Delta h is a factor that affects the edge effect, and it was used to simulate plasma and guide the diamond-film deposition experiments. Finite-element software COMSOL Multiphysics was used to construct a multiphysics (electromagnetic, plasma, and fluid heat transfer fields) coupling model based on electron collision reaction. Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model. The simulation results reflected the experimental trends observed. Plasma discharge at the edge of the substrate accelerated due to the increase in \Delta h ( \Delta h = 0–3 mm), and the values of electron density ( n_\mathrme ), molar concentration of H ( C_\mathrmH ), and molar concentration of CH3 ( C_\mathrmC\mathrmH_3 ) doubled at the edge (for the special concave sample with \Delta h = −1 mm, the active chemical groups exhibited a decreased molar concentration at the edge of the substrate). At \Delta h = 0–3 mm, a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate, and their values increased with \Delta h . The uniformity of film thickness decreased with \Delta h . The Raman spectra of all samples revealed the first-order characteristic peak of diamond near 1332 cm−1. When \Delta h = −1 mm, tensile stress occurred in all regions of the film. When \Delta h = 1–3 mm, all areas in the film exhibited compressive stress.

 

/

返回文章
返回