留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 12
Dec.  2024

图(9)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  431
  • HTML全文浏览量:  198
  • PDF下载量:  19
  • 被引次数: 0
Qian Cheng, Zerui Lei, Guangjun Mei,  and Jianhua Chen, Impact of ethanol on the flotation efficiency of imidazolium ionic liquids as collectors: Insights from dynamic surface tension and solvation analysis, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2645-2656. https://doi.org/10.1007/s12613-024-2835-6
Cite this article as:
Qian Cheng, Zerui Lei, Guangjun Mei,  and Jianhua Chen, Impact of ethanol on the flotation efficiency of imidazolium ionic liquids as collectors: Insights from dynamic surface tension and solvation analysis, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2645-2656. https://doi.org/10.1007/s12613-024-2835-6
引用本文 PDF XML SpringerLink
研究论文

以动态表面张力和溶剂化视角研究乙醇对两种咪唑离子液体捕收剂浮选效率的差异性影响


  • 通讯作者:

    梅光军    E-mail: meiguangjun@aliyun.com

文章亮点

  • (1) 发现了极少量的乙醇便可以对浮选过程产生显著影响,并且乙醇对亲水性和疏水性离子液体的影响截然不同。
  • (2) 在没有抑制剂的情况下,提高了C12[mim]PF6捕收剂对混合矿物浮选分离效果。
  • (3) 从动态表面张力和溶剂化两方面分析了乙醇影响浮选可能的原因。
  • (4) 乙醇在特定浓度可以减少浮选过程中的泡沫兼并,并加快刮出泡沫的消泡。
  • 在深入研究离子液体作为捕收剂应用于矿物浮选的过程中,采用了乙醇(EtOH)为溶剂溶解疏水离子液体(ILs),以简化药剂制度。由此观察到一些特殊现象,即EtOH对两种结构相似的ILs的浮选效率有不同的影响。纯矿物试验中, 1-十二烷基-3-甲基咪唑氯(C12[mim]Cl)浓度为1 × 10−5 mol·L−1时,与C12[mim]Cl(水溶剂)相比, C12[mim]Cl(EtOH溶剂)浮选石英的回收率从23.77%提高到77.91%。但在相同条件下,1-十二烷基-3-甲基咪唑六氟磷酸盐(C12[mim]PF6)浮选石英的回收率从60.45%下降到24.52%。ILs浓度为 1 × 10−5 mol·L−1的 EtOH浓度条件试验,以及EtOH体积比2%的ILs浓度条件试验证实了这种差异。混合矿浮选中,C12[mim]Cl(EtOH溶剂)的赤铁矿精矿品位和回收率相比于C12[mim]Cl(水溶剂)显著降低,而C12[mim]PF6(EtOH溶剂)的赤铁矿精矿品位和回收率却大幅提高。基于浮选中观察到的泡沫差异,进行了两相气泡观测试验。在充气过程中,EtOH使两种ILs的泡沫高度均提高。停止充气后,两者静态泡沫消泡速度均加快,其中C12[mim]PF6泡沫消泡速度极快。讨论中采用动态表面张力效应和溶剂化效应来解释EtOH对两种ILs差异性影响背后的原因和机制。后又通过傅里叶红外(FT-IR)、x射线光电子能谱(XPS)和Zeta电位测试验证了溶剂化效果。虽然EtOH会对浮选过程中ILs在矿石表面的吸附产生负面影响,但其抑制浮选充气过程中的泡沫兼并,并加速静态泡沫消泡速度的特性具有好的发展价值。这也使得C12[mim]PF6混合矿浮选中出现了更强的二次富集效应,即使在无抑制剂条件下也能实现有效的混合矿石分离。
  • Research Article

    Impact of ethanol on the flotation efficiency of imidazolium ionic liquids as collectors: Insights from dynamic surface tension and solvation analysis

    + Author Affiliations
    • To conduct extensive research on the application of ionic liquids as collectors in mineral flotation, ethanol (EtOH) was used as a solvent to dissolve hydrophobic ionic liquids (ILs) to simplify the reagent regime. Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures. When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride (C12[mim]Cl) and as a collector for pure quartz flotation tests at a concentration of 1 × 10−5 mol·L−1, quartz recovery increased from 23.77% to 77.91% compared with ILs dissolved in water. However, quartz recovery of 1-dodecyl-3-methylimidazolium hexafluorophosphate (C12[mim]PF6) decreased from 60.45% to 24.52% under the same conditions. The conditional experiments under 1 × 10−5 mol·L−1 ILs for EtOH concentration and under 2vol% EtOH for ILs concentration confirmed this difference. After being affected by EtOH, the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and recovery for the C12[mim]Cl collector, whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased. On the basis of these differences and observations of flotation foam, two-phase bubble observation tests were carried out. The EtOH promoted the foam height of two ILs during aeration. It accelerated static froth defoaming after aeration stopped, and the foam of C12[mim]PF6 defoaming especially quickly. In the discussion of flotation tests and foam observation, an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH. The solvation effect was verified through Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and Zeta potential tests. Although EtOH affects the adsorption of ILs on the ore surface during flotation negatively, it holds an positive value of inhibiting foam merging during flotation aeration and accelerating the defoaming of static foam. And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector, facilitating effective mixed ore separation even under inhibitor-free conditions.
    • loading
    • [1]
      K.R. Seddon, A taste of the future, Nat. Mater., 2(2003), No. 6, p. 363. doi: 10.1038/nmat907
      [2]
      S.A. Forsyth, J.M. Pringle, and D.R. MacFarlane, Ionic liquids—An overview, Aust. J. Chem., 57(2004), No. 2, art. No. 113. doi: 10.1071/CH03231
      [3]
      Y.L. Wang, H.Y. He, C.L. Wang, et al., Insights into ionic liquids: From Z-bonds to quasi-liquids, JACS Au, 2(2022), No. 3, p. 543. doi: 10.1021/jacsau.1c00538
      [4]
      B.A.D. Neto and J. Spencer, The impressive chemistry, applications and features of ionic liquids: Properties, catalysis & catalysts and trends, J. Braz. Chem. Soc., 23(2012), No. 6, p. 987. doi: 10.1590/S0103-50532012000600002
      [5]
      Y. Liang, S.X. Bao, Y.M. Zhang, B. Chen, and C. Yu, Adsorption behavior of vanadium using supported 1-butyl-3-methylimidazolium chloride ionic liquid, Miner. Process. Extr. Metall. Rev., 45(2024), No. 3, p. 238. doi: 10.1080/08827508.2022.2141733
      [6]
      B.Y. Liu and N.X. Jin, The applications of ionic liquid as functional material: A review, Curr. Org. Chem., 20(2016), No. 20, p. 2109. doi: 10.2174/1385272820666160527101844
      [7]
      W.J. Qian, J. Texter, and F. Yan, Frontiers in poly(ionic liquid)s: Syntheses and applications, Chem. Soc. Rev., 46(2017), No. 4, p. 1124. doi: 10.1039/C6CS00620E
      [8]
      P.C. Marr and A.C. Marr, Ionic liquid gel materials: Applications in green and sustainable chemistry, Green Chem., 18(2016), No. 1, p. 105. doi: 10.1039/C5GC02277K
      [9]
      F.K. Chong, F.T. Eljack, M. Atilhan, D.C.Y. Foo and N.G. Chemmangattuvalappil, Ionic liquid design for enhanced carbon dioxide capture-A computer aided molecular design approach, Chem. Eng., 39(2014), No. 253.
      [10]
      A.M. Vieira and A.E.C. Peres, The effect of amine type, pH, and size range in the flotation of quartz, Miner. Eng., 20(2007), No. 10, p. 1008. doi: 10.1016/j.mineng.2007.03.013
      [11]
      A. Liu, J.C. Fan, and M.Q. Fan, Quantum chemical calculations and molecular dynamics simulations of amine collector adsorption on quartz (001) surface in the aqueous solution, Int. J. Miner. Process., 134(2015), p. 1. doi: 10.1016/j.minpro.2014.11.001
      [12]
      V. Nunna, S.P. Suthers, M.I. Pownceby, and G.J. Sparrow, Beneficiation strategies for removal of silica and alumina from low-grade hematite–goethite iron ores, Miner. Process. Extr. Metall. Rev., 43(2022), No. 8, p. 1049. doi: 10.1080/08827508.2021.2003353
      [13]
      D.S. He, K.X. Shang, W.M. Xie, F. Chen, M. Benzaazoua, and T.N. Aleksandrova, Study on the foam behavior of amine reagents adsorbed at gas–liquid and gas–liquid–solid interfaces, Physicochem. Probl. Miner. Process., 57(2020), No. 1, p. 192. doi: 10.37190/ppmp/130997
      [14]
      S.B. Liu, Y.Y. Ge, J. Fang, J. Yu, and Q. Gao, An investigation of froth stability in reverse flotation of collophane, Miner. Eng., 155(2020), art. No. 106446. doi: 10.1016/j.mineng.2020.106446
      [15]
      X.Q. Weng, G.J. Mei, T.T. Zhao, and Y. Zhu, Utilization of novel ester-containing quaternary ammonium surfactant as cationic collector for iron ore flotation, Sep. Purif. Technol., 103(2013), p. 187. doi: 10.1016/j.seppur.2012.10.015
      [16]
      R.Q. Xie, Y.M. Zhu, J. Liu, and Y.J. Li, The flotation behavior and adsorption mechanism of a new cationic collector on the separation of spodumene from feldspar and quartz, Sep. Purif. Technol., 264(2021), art. No. 118445. doi: 10.1016/j.seppur.2021.118445
      [17]
      V.A. Araujo, N. Lima, A. Azevedo, L. Bicalho, and J. Rubio, Column reverse rougher flotation of iron bearing fine tailings assisted by HIC and a new cationic collector, Miner. Eng., 156(2020), art. No. 106531. doi: 10.1016/j.mineng.2020.106531
      [18]
      R. Li, C. Marion, E.R.L. Espiritu, R. Multani, X.Q. Sun, and K.E. Waters, Investigating the use of an ionic liquid for rare earth mineral flotation, J. Rare Earths, 39(2021), No. 7, p. 866. doi: 10.1016/j.jre.2020.09.003
      [19]
      D. Azizi, F. Larachi, and M. Latifi, Ionic-liquid collectors for rare-earth minerals flotation:Case of tetrabutylammonium bis(2-ethylhexyl)-phosphate for monazite and bastnäsite recovery, Colloids Surf. A, 506(2016), p. 74. doi: 10.1016/j.colsurfa.2016.06.011
      [20]
      X.C. Zhu, H.B. Wei, M.Y. Hou, Q.B. Wang, X.F. You, and L. Li, Thermodynamic behavior and flotation kinetics of an ionic liquid microemulsion collector for coal flotation, Fuel, 262(2020), art. No. 116627. doi: 10.1016/j.fuel.2019.116627
      [21]
      H. Qiu, C. Degenhardt, N. Feuge, D. Goldmann, and R. Wilhelm, Influencing the froth flotation of LiAlO2 and melilite solid solution with ionic liquids, RSC Adv., 12(2022), No. 45, p. 29562. doi: 10.1039/D2RA02922G
      [22]
      H. Sahoo, S.S. Rath, and B. Das, Use of the ionic liquid-tricaprylmethyl ammonium salicylate (TOMAS) as a flotation collector of quartz, Sep. Purif. Technol., 136(2014), p. 66. doi: 10.1016/j.seppur.2014.08.034
      [23]
      H. Sahoo, S.S. Rath, S.K. Jena, B.K. Mishra, and B. Das, Aliquat-336 as a novel collector for quartz flotation, Adv. Powder Technol., 26(2015), No. 2, p. 511. doi: 10.1016/j.apt.2014.12.010
      [24]
      H. Sahoo, N. Sinha, S.S. Rath, and B. Das, Ionic liquids as novel quartz collectors: Insights from experiments and theory, Chem. Eng. J., 273(2015), p. 46. doi: 10.1016/j.cej.2015.03.050
      [25]
      H. Sahoo, S.S. Rath, B. Das, and B.K. Mishra, Flotation of quartz using ionic liquid collectors with different functional groups and varying chain lengths, Miner. Eng., 95(2016), p. 107. doi: 10.1016/j.mineng.2016.06.024
      [26]
      H. Li, G. Mei, M. Yu, Q. Cheng, and G. Zhu, The mechanism study on aryl-substituted aromatic acid ionic liquid as the collector for quartz flotation, Physicochem. Probl. Miner. Process., 55(2019), No. 5, p. 1239.
      [27]
      J.Q. Zhou, G.J. Mei, M.M. Yu, and X.W. Song, Effect and mechanism of quaternary ammonium salt ionic liquid as a collector on desulfurization and desilication from artificial mixed bauxite using flotation, Miner. Eng., 181(2022), art. No. 107523. doi: 10.1016/j.mineng.2022.107523
      [28]
      Q.Z. Yuan, G.J. Mei, C. Liu, Q. Cheng, and S.Y. Yang, A novel sulfur-containing ionic liquid collector for the reverse flotation separation of pyrrhotite from magnetite, Sep. Purif. Technol., 303(2022), art. No. 122189. doi: 10.1016/j.seppur.2022.122189
      [29]
      Q. Cheng, G.J. Mei, W. Xu, and Q.Z. Yuan, Flotation of quartz using imidazole ionic liquid collectors with different counterions, Miner. Eng., 180(2022), art. No. 107491. doi: 10.1016/j.mineng.2022.107491
      [30]
      M. Wu, M.M. Yu, Q. Cheng, et al., Flotation recovery of Y2O3 from waste phosphors using ionic liquids as collectors, Chem. Phys. Lett., 825(2023), art. No. 140608. doi: 10.1016/j.cplett.2023.140608
      [31]
      J. Fang, Y.Y. Ge, and J. Yu, Effects of particle size and wettability on froth stability in a collophane flotation system, Powder Technol., 379(2021), p. 576. doi: 10.1016/j.powtec.2020.11.028
      [32]
      K.Y. Guo, T.F. Wang, G.Y. Yang, and J.F. Wang, Distinctly different bubble behaviors in a bubble column with pure liquids and alcohol solutions, J. Chem. Technol. Biotechnol., 92(2017), No. 2, p. 432. doi: 10.1002/jctb.5022
      [33]
      S.R. Syeda, A. Afacan, and K.T. Chuang, Effect of surface tension gradient on froth stabilization and tray efficiency, Chem. Eng. Res. Des., 82(2004), No. 6, p. 762. doi: 10.1205/026387604774196046
      [34]
      S. Andrew, Frothing in two-component liquid mixtures, [in] Proceedings of the Symposium on Chemical Process Hazards with Special Reference to Plant Design, United Kingdom, 1960, p. 73.
      [35]
      G. Marrucci and L. Nicodemo, Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes, Chem. Eng. Sci., 22(1967), No. 9, p. 1257. doi: 10.1016/0009-2509(67)80190-8
      [36]
      P.C. Hiemenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry , Revised and Expanded, CRC Press, Boca Raton, 2016.
      [37]
      M.C. Fuerstenau and K.N. Han, Principles of Mineral Processing, SME media, Staines, 2003.
      [38]
      L. Wang, Y. Peng, K. Runge, and D. Bradshaw, A review of entrainment: Mechanisms, contributing factors and modelling in flotation, Miner. Eng., 70(2015), p. 77. doi: 10.1016/j.mineng.2014.09.003
      [39]
      X.Y. Zhu, H. Sun, D.J. Zhang, and C.B. Liu, Theoretical study on the interactions between methanol and imidazolium-based ionic liquids, J. Mol. Model., 17(2011), No. 8, p. 1997. doi: 10.1007/s00894-010-0879-1
      [40]
      Y. Wang, H.R. Li, and S.J. Han, A theoretical investigation of the interactions between water molecules and ionic liquids, J. Phys. Chem. B, 110(2006), No. 48, p. 24646. doi: 10.1021/jp064134w
      [41]
      J. Barthel, H. Krienke, and W. Kunz, Physical Chemistry of Electrolyte Solutions : Modern Sspects, Springer Science & Business Media, Berlin, 1998.
      [42]
      H.L. Zhang, Z.J. Xu, W. Sun, et al., Selective adsorption mechanism of dodecylamine on the hydrated surface of hematite and quartz, Sep. Purif. Technol., 275(2021), art. No. 119137. doi: 10.1016/j.seppur.2021.119137
      [43]
      S.R. Rao, Surface Chemistry of Froth Flotation : Volume 1 : Fundamentals, Springer Science & Business Media, Berlin, 2013.
      [44]
      V. Pino, C. Yao, and J.L. Anderson, Micellization and interfacial behavior of imidazolium-based ionic liquids in organic solvent–water mixtures, J. Colloid Interface Sci., 333(2009), No. 2, p. 548. doi: 10.1016/j.jcis.2009.02.037
      [45]
      J.J. Wang, L.M. Zhang, H.Y. Wang, and C.Z. Wu, Aggregation behavior modulation of 1-dodecyl-3-methylimidazolium bromide by organic solvents in aqueous solution, J. Phys. Chem. B, 115(2011), No. 17, p. 4955. doi: 10.1021/jp201604u
      [46]
      A. Rodríguez, M.D. Graciani, and M.L. Moyá, Effects of addition of polar organic solvents on micellization, Langmuir, 24(2008), No. 22, p. 12785. doi: 10.1021/la802320s

    Catalog


    • /

      返回文章
      返回