留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 8
Aug.  2024

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  361
  • HTML全文浏览量:  165
  • PDF下载量:  18
  • 被引次数: 0
Yingbo Dong, Jinyu Zan,  and Hai Lin, Bioleaching of vanadium from stone coal vanadium ore by Bacillus mucilaginosus: Influencing factors and mechanism, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1828-1838. https://doi.org/10.1007/s12613-024-2836-5
Cite this article as:
Yingbo Dong, Jinyu Zan,  and Hai Lin, Bioleaching of vanadium from stone coal vanadium ore by Bacillus mucilaginosus: Influencing factors and mechanism, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1828-1838. https://doi.org/10.1007/s12613-024-2836-5
引用本文 PDF XML SpringerLink
研究论文

胶质芽孢杆菌浸出石煤钒矿中钒的影响因素与机理



  • 通讯作者:

    林海    E-mail: linhai@ces.ustb.edu.cn

文章亮点

  • (1) 获得了不同因素对胶质芽孢杆菌浸出石煤中钒的影响规律
  • (2) 研究发现胶质芽孢杆菌的代谢产物柠檬酸、草酸在浸钒中起主导作用
  • (3) 研究发现石煤钒矿的存在可诱导胶质芽孢杆菌体内碳酸酐酶活性的提高
  • 微生物浸矿技术具有工艺简单、绿色环保、适于处理低品位矿石等优势。本论文系统研究了胶质芽孢杆菌浸出石煤钒矿中钒的影响因素与浸钒机理。通过静态浸出试验,优化得到了胶质芽孢杆菌浸钒的适宜条件为:固液比10 g⋅L−1、每100mL培养液1mL菌种接种量、反应温度30°C、蔗糖添加量20 g⋅L−1、摇床转速180 r⋅min−1。研究发现胶质芽孢杆菌对石煤中钒的浸出包括直接作用和代谢产物的间接作用,且间接作用贡献率更大,为73.8%,菌种代谢产物柠檬酸、草酸等通过酸解和络合作用实现了钒的浸出。此外发现,石煤能够促进胶质芽孢杆菌体内碳酸酐酶的催化活性,酶活性提高了1.335–1.905 U,而酶活性的提高进一步促进了代谢物有机酸的产生,总有机酸含量增加了39.31 mg⋅L−1,使浸出体系pH值降低了2.51,营造的酸性体系更有利于促进石煤中钒的浸出。
  • Research Article

    Bioleaching of vanadium from stone coal vanadium ore by Bacillus mucilaginosus: Influencing factors and mechanism

    + Author Affiliations
    • Vanadium and its derivatives are used in various industries, including steel, metallurgy, pharmaceuticals, and aerospace engineering. Although China has massive reserves of stone coal resources, these resources have low grades. Therefore, the effective extraction and recovery of metallic vanadium from stone coal is an important way to realize the efficient resource utilization of stone coal vanadium ore. Herein, Bacillus mucilaginosus was selected as the leaching strain. The vanadium leaching rate reached 35.5% after 20 d of bioleaching under optimal operating conditions. The cumulative vanadium leaching rate in the contact group reached 35.5%, which was higher than that in the noncontact group (9.3%). The metabolites of B. mucilaginosus, such as oxalic, tartaric, citric, and malic acids, dominated in bioleaching, accounting for 73.8% of the vanadium leaching rate. Interestingly, during leaching, the presence of stone coal stimulated the expression of carbonic anhydrase in bacterial cells, and enzyme activity increased by 1.335–1.905 U. Enzyme activity positively promoted the production of metabolite organic acids, and total organic acid content increased by 39.31 mg·L−1, resulting in a reduction of 2.51 in the pH of the leaching system with stone coal. This effect favored the leaching of vanadium from stone coal. Atomic force microscopy illustrated that bacterial leaching exacerbated corrosion on the surface of stone coal beyond 10 nm. Our study provides a clear and promising strategy for exploring the bioleaching mechanism from the perspective of microbial enzyme activity and metabolites.
    • loading
    • Supplementary Information-s12613-024-2836-5.docx
    • [1]
      X.X. Guo, S.M. Chen, Y.W. Han, C.B. Hao, X.J. Feng, and B.G. Zhang, Bioleaching performance of vanadium-bearing smelting ash by Acidithiobacillus ferrooxidans for vanadium recovery, J. Environ. Manage., 336(2023), art. No. 117615. doi: 10.1016/j.jenvman.2023.117615
      [2]
      X.S. Li, B. Xie, G.E. Wang, and X.J. Li, Oxidation process of low-grade vanadium slag in presence of Na2CO3, Trans. Nonferrous Met. Soc. China, 21(2011), No. 8, p. 1860. doi: 10.1016/S1003-6326(11)60942-4
      [3]
      F.A.C. Amorim, B. Welz, A.C.S. Costa, F.G. Lepri, M.G.R. Vale, and S.L.C. Ferreira, Determination of vanadium in petroleum and petroleum products using atomic spectrometric techniques, Talanta, 72(2007), No. 2, p. 349. doi: 10.1016/j.talanta.2006.12.015
      [4]
      J.C. Lee, Kurniawan, E.Y. Kim, K.W. Chung, R. Kim, and H.S. Jeon, A review on the metallurgical recycling of vanadium from slags: Towards a sustainable vanadium production, J. Mater. Res. Technol., 12(2021), p. 343. doi: 10.1016/j.jmrt.2021.02.065
      [5]
      H. Peng, J. Guo, B. Li, H.S. Huang, W.B. Shi, and Z.H. Liu, Removal and recovery of vanadium from waste by chemical precipitation, adsorption, solvent extraction, remediation, photo-catalyst reduction and membrane filtration. A review, Environ. Chem. Lett., 20(2022), No. 3, p. 1763. doi: 10.1007/s10311-022-01395-z
      [6]
      Z.L. Wang, B.G. Zhang, C. He, J.X. Shi, M.X. Wu, and J.H. Guo, Sulfur-based mixotrophic vanadium (V) bio-reduction towards lower organic requirement and sulfate accumulation, Water Res., 189(2021), art. No. 116655. doi: 10.1016/j.watres.2020.116655
      [7]
      B. Zhang, Y. Jiang, K. Zuo, C. He, Y. Dai, and Z.J. Ren, Microbial vanadate and nitrate reductions coupled with anaerobic methane oxidation in groundwater, J. Hazard. Mater., 382(2020), art. No. 121228. doi: 10.1016/j.jhazmat.2019.121228
      [8]
      B.G. Zhang, Y.N. Li, Y.M. Fei, and Y.T. Cheng, Novel pathway for vanadium(V) bio-detoxification by gram-positive Lactococcus raffinolactis , Environ. Sci. Technol., 55(2021), No. 3, p. 2121.
      [9]
      A. Mahdavian, A. Shafyei, E.K. Alamdari, and D. Haghshenas, Recovery of vanadium from Esfahan steel company steel slag: Optimizing of roasting and leaching parameters, Int. J. Iron Steel Soc. Iran, 3(2006), p. 17.
      [10]
      S.M.J. Mirazimi, Z. Abbasalipour, and F. Rashchi, Vanadium removal from LD converter slag using bacteria and fungi, J. Environ. Manage., 153(2015), p. 144. doi: 10.1016/j.jenvman.2015.02.008
      [11]
      A. Nikiforova, O. Kozhura, and O. Pasenko, Application of lime in two-stage purification of leaching solution of spent vanadium catalysts for sulfuric acid production, Hydrometallurgy, 172(2017), p. 51. doi: 10.1016/j.hydromet.2017.06.020
      [12]
      E. Romanovskaia, V. Romanovski, W. Kwapinski, and I. Kurilo, Selective recovery of vanadium pentoxide from spent catalysts of sulfuric acid production: Sustainable approach, Hydrometallurgy, 200(2021), art. No. 105568. doi: 10.1016/j.hydromet.2021.105568
      [13]
      J.X. Li, B.G. Zhang, M. Yang, and H. Lin, Bioleaching of vanadium by Acidithiobacillus ferrooxidans from vanadium-bearing resources: Performance and mechanisms, J. Hazard. Mater., 416(2021), art. No. 125843. doi: 10.1016/j.jhazmat.2021.125843
      [14]
      Y.G. Teng, J. Yang, Z.J. Sun, J.S. Wang, R. Zuo, and J.Q. Zheng, Environmental vanadium distribution, mobility and bioaccumulation in different land-use districts in Panzhihua Region, SW China, Environ. Monit. Assess., 176(2011), p. 605. doi: 10.1007/s10661-010-1607-0
      [15]
      Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109(2011), No. 1-2, p. 116. doi: 10.1016/j.hydromet.2011.06.002
      [16]
      N. Rodella, A. Bosio, A. Zacco, et al., Arsenic stabilization in coal fly ash through the employment of waste materials, J. Environ. Chem. Eng., 2(2014), No. 3, p. 1352. doi: 10.1016/j.jece.2014.05.011
      [17]
      L. Chen, J.R. Liu, W.F. Hu, J. Gao, and J.Y. Yang, Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation, J. Hazard. Mater., 405(2021), art. No. 124200. doi: 10.1016/j.jhazmat.2020.124200
      [18]
      Y. Guo, H.Y. Li, Y.H. Yuan, et al., Microemulsion leaching of vanadium from sodium-roasted vanadium slag by fusion of leaching and extraction processes, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 974. doi: 10.1007/s12613-020-2105-1
      [19]
      J.R. Ju, Y.L. Feng, H.R. Li, S.L. Liu, and C.L. Xu, Separation and recovery of V, Ti, Fe and Ca from acidic wastewater and vanadium-bearing steel slag based on a collaborative utilization process, Sep. Purif. Technol., 276(2021), art. No. 119335. doi: 10.1016/j.seppur.2021.119335
      [20]
      D. Mishra, D.J. Kim, D.E. Ralph, J.G. Ahn, and Y.H. Rhee, Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs, Hydrometallurgy, 88(2007), No. 1-4, p. 202. doi: 10.1016/j.hydromet.2007.05.007
      [21]
      D. Santhiya and Y.P. Ting, Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid, J. Biotechnol., 116(2005), No. 2, p. 171. doi: 10.1016/j.jbiotec.2004.10.011
      [22]
      H.B. Zhao, J. Wang, X.W. Gan, et al., Effects of pyrite and bornite on bioleaching of two different types of chalcopyrite in the presence of Leptospirillum ferriphilum , Bioresour. Technol., 194(2015), p. 28.
      [23]
      P.R. Gogate and A.B. Pandit, A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions, Adv. Environ. Res., 8(2004), No. 3-4, p. 553. doi: 10.1016/S1093-0191(03)00031-5
      [24]
      I. Kamika and M.N.B. Momba, Synergistic effects of vanadium and nickel on heavy metal-tolerant microbial species in wastewater systems, Desalin. Water Treat., 51(2013), No. 40-42, p. 7431. doi: 10.1080/19443994.2013.777680
      [25]
      M.A. Larsson, S. Baken, J.P. Gustafsson, G. Hadialhejazi, and E. Smolders, Vanadium bioavailability and toxicity to soil microorganisms and plants, Environ. Toxicol. Chem., 32(2013), No. 10, p. 2266. doi: 10.1002/etc.2322
      [26]
      X. Li, W.L. Yang, H.J. He, et al., Responses of microalgae Coelastrella sp. to stress of cupric ions in treatment of anaerobically digested swine wastewater, Bioresour. Technol., 251(2018), p. 274. doi: 10.1016/j.biortech.2017.12.058
      [27]
      A. Safonov, V. Tregubova, V. Ilin, et al., Comparative study of lanthanum, vanadium, and uranium bioremoval using different types of microorganisms, Water Air Soil Pollut., 229(2018), art. No. 82. doi: 10.1007/s11270-018-3740-2
      [28]
      X.X. Sun, L. Qiu, M. Kolton, et al., VV reduction by Polaromonas spp. in vanadium mine tailings, Environ. Sci. Technol., 54(2020), No. 22, p. 14442. doi: 10.1021/acs.est.0c05328
      [29]
      X.Y. Xu, S.Q. Xia, L.J. Zhou, Z.Q. Zhang, and B.E. Rittmann, Bioreduction of vanadium (V) in groundwater by autohydrogentrophic bacteria: Mechanisms and microorganisms, J. Environ. Sci., 30(2015), p. 122. doi: 10.1016/j.jes.2014.10.011
      [30]
      K. Yin, Q.N. Wang, M. Lv, and L.X. Chen, Microorganism remediation strategies towards heavy metals, Chem. Eng. J., 360(2019), p. 1553. doi: 10.1016/j.cej.2018.10.226
      [31]
      B.G. Zhang, L.T. Hao, C.X. Tian, et al., Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture, Bioresour. Technol., 192(2015), p. 410. doi: 10.1016/j.biortech.2015.05.102
      [32]
      B.G. Zhang, S. Wang, M.H. Diao, et al., Microbial community responses to vanadium distributions in mining geological environments and bioremediation assessment, J. Geophys. Res. Biogeosci., 124(2019), No. 3, p. 601. doi: 10.1029/2018JG004670
      [33]
      D.S. Holmes, Review of international biohydrometallurgy symposium, Frankfurt, 2007, Hydrometallurgy, 92(2008), No. 1-2, p. 69. doi: 10.1016/j.hydromet.2008.01.003
      [34]
      T.J. Xu, T. Ramanathan, and Y.P. Ting, Bioleaching of incineration fly ash by Aspergillus niger – precipitation of metallic salt crystals and morphological alteration of the fungus, Biotechnol. Rep., 3(2014), p. 8. doi: 10.1016/j.btre.2014.05.009
      [35]
      J. Zeng, M. Gou, Y.Q. Tang, G.Y. Li, Z.Y. Sun, and K. Kida, Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community, Bioresour. Technol., 218(2016), p. 859. doi: 10.1016/j.biortech.2016.07.051
      [36]
      Z.Z. Huang, S.S. Feng, Y.J. Tong, and H.L. Yang, Enhanced “contact mechanism” for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus , J. Environ. Manage., 242(2019), p. 11.
      [37]
      B.B. Mo and B. Lian, Interactions between Bacillus mucilaginosus and silicate minerals (weathered adamellite and feldspar): Weathering rate, products, and reaction mechanisms, Chin. J. Geochem., 30(2011), p. 187. doi: 10.1007/s11631-011-0500-z
      [38]
      Y. Wang, Z.L. Cai, Y.M. Zhang, and Q.S. Zheng, Green recovery of vanadium from vanadium-bearing shale under the biological action by Bacillus mucilaginosus and its effect on mineral dissolution, J. Environ. Chem. Eng., 10(2022), No. 1, art. No. 107048. doi: 10.1016/j.jece.2021.107048
      [39]
      H.Q. Tian, Z.L. Cai, Y.M. Zhang, and Q.S. Zheng, Chemical mutation of Bacillus mucilaginosus genes to enhance the bioleaching of vanadium-bearing shale, Biochem. Eng. J., 197(2023), art. No. 108962. doi: 10.1016/j.bej.2023.108962
      [40]
      Y.B. Dong, Y. Liu, H. Lin, and C.J. Liu, Improving vanadium extraction from stone coal via combination of blank roasting and bioleaching by ARTP-mutated Bacillus mucilaginosus , Trans. Nonferrous Met. Soc. China, 29(2019), No. 4, p. 849.
      [41]
      Z.L. Cai, Y. Wang, Y.M. Zhang, and Q.S. Zheng, Improvement on bioleaching interfacial behavior between Bacillus mucilaginosus and vanadium-bearing shale by surfactant additive, J. Environ. Chem. Eng., 10(2022), No. 6, art. No. 108911. doi: 10.1016/j.jece.2022.108911
      [42]
      L.L. Xiao and B. Lian, Heterologously expressed carbonic anhydrase from Bacillus mucilaginosus promoting CaCO3 formation by capturing atmospheric CO2, Carbonates Evaporites, 31(2016), No. 1, p. 39. doi: 10.1007/s13146-015-0239-4
      [43]
      S. Chang, Y. He, Y.X. Li, and X.M. Cui, Study on the immobilization of carbonic anhydrases on geopolymer microspheres for CO2 capture, J. Cleaner Prod., 316(2021), art. No. 128163. doi: 10.1016/j.jclepro.2021.128163
      [44]
      S. Sundaram and I.S. Thakur, Induction of calcite precipitation through heightened production of extracellular carbonic anhydrase by CO2 sequestering bacteria, Bioresour. Technol., 253(2018), p. 368. doi: 10.1016/j.biortech.2018.01.081
      [45]
      Y. Pocker and J.T. Stone, The catalytic versatility of erythrocyte carbonic anhydrase. VI. Kinetic studies of noncompetitive inhibition of enzyme-catalyzed hydrolysis of p-nitrophenyl acetate, Biochemistry, 7(1968), No. 8, p. 2936. doi: 10.1021/bi00848a034
      [46]
      T. Hirajima, H. Miki, G.P.W. Suyantara, et al., Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation, Miner. Eng., 100(2017), p. 83. doi: 10.1016/j.mineng.2016.10.007
      [47]
      Y.B. Dong, S.J. Chong, and H. Lin, Enhanced effect of biochar on leaching vanadium and copper from stone coal tailings by Thiobacillus ferrooxidans , Environ. Sci. Pollut. Res., 29(2022), p. 20398.
      [48]
      L. Dusengemungu, G. Kasali, C. Gwanama, and B. Mubemba, Overview of fungal bioleaching of metals, Environ. Adv., 5(2021), art. No. 100083. doi: 10.1016/j.envadv.2021.100083
      [49]
      T.H. Nguyen, S. Won, M.G. Ha, D.D. Nguyen, and H.Y. Kang, Bioleaching for environmental remediation of toxic metals and metalloids: A review on soils, sediments, and mine tailings, Chemosphere, 282(2021), art. No. 131108. doi: 10.1016/j.chemosphere.2021.131108
      [50]
      J. Hajihoseini and M. Fakharpour, Effect of temperature on bioleaching of iron impurities from Kaolin by Aspergillus niger fungal, J. Asian Ceram. Soc., 7(2019), No. 1, p. 82. doi: 10.1080/21870764.2019.1571152
      [51]
      S. Qayyum, K. Meng, S. Pervez, F. Nawaz, and C.S. Peng, Optimization of pH, temperature and carbon source for bioleaching of heavy metals by Aspergillus flavus isolated from contaminated soil, Main Group Met. Chem., 42(2019), No. 1, p. 1. doi: 10.1515/mgmc-2018-0038
      [52]
      J.M. Zhao, W.J. Wu, X. Zhang, M.L. Zhu, and W.S. Tan, Characteristics of bio-desilication and bio-flotation of Paenibacillus mucilaginosus BM-4 on aluminosilicate minerals, Int. J. Miner. Process., 168(2017), p. 40. doi: 10.1016/j.minpro.2017.09.002
      [53]
      X. Wang, H. Lin, Y.B. Dong, and G.Y. Li, Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 253. doi: 10.1007/s12613-018-1568-9
      [54]
      L.L. Xiao, J.C. Hao, W.Y. Wang, et al., The up-regulation of carbonic anhydrase genes of Bacillus mucilaginosus under soluble Ca2+Deficiency and the heterologously expressed enzyme promotes calcite dissolution, Geomicrobiol. J., 31(2014), No. 7, p. 632. doi: 10.1080/01490451.2014.884195
      [55]
      W. Li, P.P. Zhou, L.P. Jia, L.J. Yu, X.L. Li, and M. Zhu, Limestone dissolution induced by fungal mycelia, acidic materials, and carbonic anhydrase from fungi, Mycopathologia, 167(2009), p. 37. doi: 10.1007/s11046-008-9143-y
      [56]
      Y.B. Dong, H. Lin, Y. Liu, and Y. Zhao, Blank roasting and bioleaching of stone coal for vanadium recycling, J. Cleaner Prod., 243(2020), art. No. 118625. doi: 10.1016/j.jclepro.2019.118625
      [57]
      D. Fullston, D. Fornasiero, and J. Ralston, Zeta potential study of the oxidation of copper sulfide minerals, Colloids Surf. A, 146(1999), No. 1-3, p. 113. doi: 10.1016/S0927-7757(98)00725-0
      [58]
      Y.Y. Hu, W.T. Liu, W.J. Wang, et al., Biomineralization performance of Bacillus sphaericus under the action of Bacillus mucilaginosus , Adv. Mater. Sci. Eng., 2020(2020), art. No. 6483803.
      [59]
      Y.B. Dong, S.J. Chong, and H. Lin, Bioleaching and biosorption behavior of vanadium-bearing stone coal by Bacillus mucilaginosus , Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 283.
      [60]
      W. Sand, T. Gehrke, P.G. Jozsa, and A. Schippers, (Bio)chemistry of bacterial leaching—Direct vs. indirect bioleaching, Hydrometallurgy, 59(2001), No. 2-3, p. 159. doi: 10.1016/S0304-386X(00)00180-8

    Catalog


    • /

      返回文章
      返回