留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(14)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1220
  • HTML全文浏览量:  179
  • PDF下载量:  38
  • 被引次数: 0
Jingdong Huang and Xiao Yang, Oxygen-assisted zinc recovery from electric arc furnace dust using magnesium chloride, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2300-2311. https://doi.org/10.1007/s12613-024-2837-4
Cite this article as:
Jingdong Huang and Xiao Yang, Oxygen-assisted zinc recovery from electric arc furnace dust using magnesium chloride, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2300-2311. https://doi.org/10.1007/s12613-024-2837-4
引用本文 PDF XML SpringerLink
研究论文

氧气辅助MgCl2氯化:电炉粉尘中锌的高效回收方法



  • 通讯作者:

    杨肖    E-mail: yangxiao@westlake.edu.cn

文章亮点

  • (1) 提出并验证了氧气辅助MgCl2氯化实现电炉粉尘中锌铁分离的技术新思路
  • (2) 系统阐明了MgCl2与ZnFe2O4之间的反应机理和影响因素
  • (3) 揭示了氧气抑制粉尘中含铁物相氯化的关键作用机制
  • 电炉炼钢过程中产生的粉尘作为主要的二次锌资源,具有显著的回收价值。然而,锌在电炉粉尘中主要以结构极其稳定的铁酸锌(ZnFe2O4)的形式存在,其分离回收存在很多挑战。针对这一问题,本文提出了一种氧气辅助MgCl2氯化的技术思路,用于实现电炉粉尘中锌的选择性氯化分离。本文重点阐明了氧气对熔融MgCl2氯化ZnFe2O4反应的影响规律和机制。研究结果表明,MgCl2可有效破坏ZnFe2O4的晶体结构,而氧气的存在会促进MgFe2O4的形成,抑制铁的氯化,有利于锌的高选择性氯化分离。动力学分析表明,在氧气辅助下,ZnFe2O4中的锌被MgCl2氯化的过程遵循扩散控制的未反应核模型。基于上述发现,本文进一步完成了技术思路的验证,利用氧气辅助MgCl2氯化从实际电炉粉尘中提取了富含ZnCl2的产物。在1000°C的空气中、质量比为0.6:1的MgCl2与电炉粉尘反应40 min后,锌的氯化率高达97%,而铁的氯化率低于1%,所得产物中ZnCl2的质量分数超过85%。本研究为含锌粉尘的资源回收技术开发提供了有益参考。
  • Research Article

    Oxygen-assisted zinc recovery from electric arc furnace dust using magnesium chloride

    + Author Affiliations
    • Electric arc furnace (EAF) dust is an important secondary resource containing metals, such as zinc (Zn) and iron (Fe). Recovering Zn from EAF dust can contribute to resource recycling and reduce environmental impacts. However, the high chemical stability of ZnFe2O4 in EAF dust poses challenges to Zn recovery. To address this issue, a facile approach that involves oxygen-assisted chlorination using molten MgCl2 is proposed. This work focused on elucidating the role of O2 in the reaction between ZnFe2O4 and molten MgCl2. The results demonstrate that MgCl2 effectively broke down the ZnFe2O4 structure, and the high O2 atmosphere considerably promoted the separation of Zn from other components in the form of ZnCl2. The presence of O2 facilitated the formation of MgFe2O4, which stabilized Fe and prevented its chlorination. Furthermore, the excessive use of MgCl2 resulted in increased evaporation loss, and high temperatures promoted the rapid separation of Zn. Building on these findings, we successfully extracted ZnCl2-enriched volatiles from practical EAF dust through oxygen-assisted chlorination. Under optimized conditions, this method achieved exceptional Zn chlorination percentage of over 97% within a short period, while Fe chlorination remained below 1%. The resulting volatiles contained 85wt% of ZnCl2, which can be further processed to produce metallic Zn. The findings offer guidance for the selective recovery of valuable metals, particularly from solid wastes such as EAF dust.
    • loading
    • Supplementary Information-s12613-024-2837-4.docx
    • [1]
      J. Wang, Y.Y. Zhang, K.K. Cui, et al., Pyrometallurgical recovery of zinc and valuable metals from electric arc furnace dust–A review, J. Cleaner Prod., 298(2021), art. No. 126788. doi: 10.1016/j.jclepro.2021.126788
      [2]
      P.J. Liu, Z.G. Liu, M.S. Chu, J. Tang, L.H. Gao, and R.J. Yan, Green and efficient utilization of stainless steel dust by direct reduction and self-pulverization, J. Hazard. Mater., 413(2021), art. No. 125403. doi: 10.1016/j.jhazmat.2021.125403
      [3]
      D.J.C. Stewart and A.R. Barron, Pyrometallurgical removal of zinc from basic oxygen steelmaking dust–A review of best available technology, Resour. Conserv. Recycl., 157(2020), art. No. 104746. doi: 10.1016/j.resconrec.2020.104746
      [4]
      K. Binnemans, P.T. Jones, Á. Manjón Fernández, and V. Masaguer Torres, Hydrometallurgical processes for the recovery of metals from steel industry by-products: A critical review, J. Sustainable Metall., 6(2020), No. 4, p. 505. doi: 10.1007/s40831-020-00306-2
      [5]
      M. Al-harahsheh, J. Al-Nu’airat, A. Al-Otoom, et al., Treatments of electric arc furnace dust and halogenated plastic wastes: A review, J. Environ. Chem. Eng., 7(2019), No. 1, art. No. 102856. doi: 10.1016/j.jece.2018.102856
      [6]
      X.L. Lin, Z.W. Peng, J.X. Yan, et al., Pyrometallurgical recycling of electric arc furnace dust, J. Cleaner Prod., 149(2017), p. 1079. doi: 10.1016/j.jclepro.2017.02.128
      [7]
      C. Li, W. Liu, F. Jiao, et al., Separation and recovery of zinc, lead and iron from electric arc furnace dust by low temperature smelting, Sep. Purif. Technol., 312(2023), art. No. 123355. doi: 10.1016/j.seppur.2023.123355
      [8]
      U. Brandner, J. Antrekowitsch, and M. Leuchtenmueller, A review on the fundamentals of hydrogen-based reduction and recycling concepts for electric arc furnace dust extended by a novel conceptualization, Int. J. Hydrogen Energy, 46(2021), No. 62, p. 31894. doi: 10.1016/j.ijhydene.2021.07.062
      [9]
      I. Fernández-Olmo, C. Lasa, and A. Irabien, Modeling of zinc solubility in stabilized/solidified electric arc furnace dust, J. Hazard. Mater., 144(2007), No. 3, p. 720. doi: 10.1016/j.jhazmat.2007.01.102
      [10]
      World Steel Association, 2023 World Steel in Figures, Brussels: World Steel Association, 2023, p. 10.
      [11]
      L. Rostek, L.A. Tercero Espinoza, D. Goldmann, and A. Loibl, A dynamic material flow analysis of the global anthropogenic zinc cycle: Providing a quantitative basis for circularity discussions, Resour. Conserv. Recycl., 180(2022), art. No. 106154. doi: 10.1016/j.resconrec.2022.106154
      [12]
      M. Al-Harahsheh, A. Al-Otoom, L. Al-Makhadmah, et al., Pyrolysis of poly(vinyl chloride) and—Electric arc furnacedust mixtures, J. Hazard. Mater., 299(2015), p. 425. doi: 10.1016/j.jhazmat.2015.06.041
      [13]
      Q. Ye, G.H. Li, Z.W. Peng, et al., Microwave-assisted self-reduction of EAF dust-biochar composite briquettes for production of direct reduced iron, Powder Technol., 362(2020), p. 781. doi: 10.1016/j.powtec.2019.10.108
      [14]
      U.S. Geological Survey, Mineral Commodity Summaries 2023, Government Printing Office, 2023.
      [15]
      Y.F. Chen, W.X. Teng, X. Feng, et al., Efficient extraction and separation of zinc and iron from electric arc furnace dust by roasting with FeSO4·7H2O followed by water leaching, Sep. Purif. Technol., 281(2022), art. No. 119936. doi: 10.1016/j.seppur.2021.119936
      [16]
      C. Frilund, M. Kotilainen, J. Barros Lorenzo, P. Lintunen, and K. Kaunisto, Steel manufacturing EAF dust as a potential adsorbent for hydrogen sulfide removal, Energy Fuels, 36(2022), No. 7, p. 3695. doi: 10.1021/acs.energyfuels.1c04235
      [17]
      P. Halli, V. Agarwal, J. Partinen, and M. Lundström, Recovery of Pb and Zn from a citrate leach liquor of a roasted EAF dust using precipitation and solvent extraction, Sep. Purif. Technol., 236(2020), art. No. 116264. doi: 10.1016/j.seppur.2019.116264
      [18]
      W. Lv, M. Gan, X.H. Fan, Z.Y. Ji, and X.L. Chen, Mechanism of calcium oxide promoting the separation of zinc and iron in metallurgical dust under reducing atmosphere, J. Mater. Res. Technol., 8(2019), No. 6, p. 5745. doi: 10.1016/j.jmrt.2019.09.043
      [19]
      N. Menad, J.N. Ayala, F. Garcia-Carcedo, E. Ruiz-Ayúcar, and A. Hernandez, Study of the presence of fluorine in the recycled fractions during carbothermal treatment of EAF dust, Waste Manage., 23(2003), No. 6, p. 483. doi: 10.1016/S0956-053X(02)00151-4
      [20]
      M. Omran and T. Fabritius, Effect of steelmaking dust characteristics on suitable recycling process determining: Ferrochrome converter (CRC) and electric arc furnace (EAF) dusts, Powder Technol., 308(2017), p. 47. doi: 10.1016/j.powtec.2016.11.049
      [21]
      C.A. Pickles, Thermodynamic analysis of the selective chlorination of electric arc furnace dust, J. Hazard. Mater., 166(2009), No. 2-3, p. 1030.
      [22]
      H.M. Tang, Z.W. Peng, L.C. Wang, A. Anzulevich, M.J. Rao, and G.H. Li, Direct conversion of electric arc furnace dust to zinc ferrite by roasting: Effect of roasting temperature, J. Sustainable Metall., 9(2023), No. 1, p. 363. doi: 10.1007/s40831-023-00649-6
      [23]
      H.M. Tang, Z.W. Peng, L.C. Wang, et al., Facile synthesis of zinc ferrite as adsorbent from high-zinc electric arc furnace dust, Powder Technol., 405(2022), art. No. 117479. doi: 10.1016/j.powtec.2022.117479
      [24]
      L.C. Wang, Z.W. Peng, X.L. Lin, et al., Microwave-intensified treatment of low-zinc EAF dust: A route toward high-grade metallized product with a focus on multiple elements, Powder Technol., 383(2021), p. 509. doi: 10.1016/j.powtec.2021.01.047
      [25]
      C.M. Tang, Z.Q. Guo, J. Pan, et al., Current situation of carbon emissions and countermeasures in China’s ironmaking industry, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1633. doi: 10.1007/s12613-023-2632-7
      [26]
      R. Chairaksa-Fujimoto, Y. Inoue, N. Umeda, S. Itoh, and T. Nagasaka, New pyrometallurgical process of EAF dust treatment with CaO addition, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 788. doi: 10.1007/s12613-015-1135-6
      [27]
      R. Chairaksa-Fujimoto, K. Maruyama, T. Miki, and T. Nagasaka, The selective alkaline leaching of zinc oxide from Electric Arc Furnace dust pre-treated with calcium oxide, Hydrometallurgy, 159(2016), p. 120. doi: 10.1016/j.hydromet.2015.11.009
      [28]
      T. Miki, R. Chairaksa-Fujimoto, K. Maruyama, and T. Nagasaka, Hydrometallurgical extraction of zinc from CaO treated EAF dust in ammonium chloride solution, J. Hazard. Mater., 302(2016), p. 90. doi: 10.1016/j.jhazmat.2015.09.020
      [29]
      H.M. Wu, J.L. Li, W.X. Teng, et al., One-step extraction of zinc and separation of iron from hazardous electric arc furnace dust via sulphating roasting–water leaching, J. Environ. Chem. Eng., 11(2023), No. 6, art. No. 111155. doi: 10.1016/j.jece.2023.111155
      [30]
      Y.C. Li, F.P. Zhao, H. Liu, B. Peng, X.B. Min, and Z. Lin, Recycling of zinc and iron from smelting waste containing zinc ferrite via sulfating roasting using SO2: Transformation effects and mechanisms, JOM, 75(2023), No. 2, p. 268. doi: 10.1007/s11837-022-05601-9
      [31]
      Y.C. Li, S.N. Zhuo, B. Peng, X.B. Min, H. Liu, and Y. Ke, Comprehensive recycling of zinc and iron from smelting waste containing zinc ferrite by oriented transformation with SO2, J. Cleaner Prod., 263(2020), art. No. 121468. doi: 10.1016/j.jclepro.2020.121468
      [32]
      Y. Huang, P.H. Shao, L.M. Yang, et al., Thermochemically driven crystal phase transfer via chlorination roasting toward the selective extraction of lithium from spent LiNi1/3Co1/3Mn1/3O2, Resour. Conserv. Recycl., 174(2021), art. No. 105757. doi: 10.1016/j.resconrec.2021.105757
      [33]
      M.Y. Li, J.K. Yang, S. Liang, et al., Ammonia chloride assisted air-chlorination recovery of tin from pyrometallurgical slag of spent lead-acid battery, Resour. Conserv. Recycl., 170(2021), art. No. 105611. doi: 10.1016/j.resconrec.2021.105611
      [34]
      Y.Y. Ma, X.Y. Zhou, J.J. Tang, X.J. Liu, H.X. Gan, and J. Yang, One-step selective recovery and cyclic utilization of valuable metals from spent lithium-ion batteries via low-temperature chlorination pyrolysis, Resour. Conserv. Recycl., 175(2021), art. No. 105840. doi: 10.1016/j.resconrec.2021.105840
      [35]
      Y. Mochizuki, N. Tsubouchi, and K. Sugawara, Separation of valuable elements from steel making slag by chlorination, Resour. Conserv. Recycl., 158(2020), art. No. 104815. doi: 10.1016/j.resconrec.2020.104815
      [36]
      G.S. Lee and Y.J. Song, Recycling EAF dust by heat treatment with PVC, Miner. Eng., 20(2007), No. 8, p. 739. doi: 10.1016/j.mineng.2007.03.001
      [37]
      H. Matsuura, T. Hamano, and F. Tsukihashi, Chlorination kinetics of ZnFe2O4 with Ar–Cl2–O2 gas, Mater. Trans., 47(2006), p. 2524. doi: 10.2320/matertrans.47.2524
      [38]
      H. Matsuura, T. Hamano, and F. Tsukihashi, Removal of Zn and Pb from Fe2O3–ZnFe2O4–ZnO–PbO mixture by selective chlorination and evaporation reactions, ISIJ Int., 46(2006), No. 8, p. 1113. doi: 10.2355/isijinternational.46.1113
      [39]
      H. Matsuura and F. Tsukihashi, Chlorination and evaporation behaviors of PbO–PbCl2 system in Ar–Cl2–O2 atmosphere, ISIJ Int., 45(2005), No. 12, p. 1804. doi: 10.2355/isijinternational.45.1804
      [40]
      H. Matsuura and F. Tsukihashi, Chlorination kinetics of ZnO with Ar–Cl2–O2 gas and the effect of oxychloride formation, Metall. Mater. Trans. B, 37(2006), No. 3, p. 413. doi: 10.1007/s11663-006-0026-7
      [41]
      H. Matsuura and F. Tsukihashi, Recovery of metals from steelmaking dust by selective chlorination–evaporation process, Miner. Process. Extr. Metall., 117(2008), No. 2, p. 123. doi: 10.1179/174328508X290920
      [42]
      T. Guo, X.J. Hu, H. Matsuura, F. Tsukihashi, and G.Z. Zhou, Kinetics of Zn removal from ZnO–Fe2O3–CaCl2 system, ISIJ Int., 50(2010), No. 8, p. 1084. doi: 10.2355/isijinternational.50.1084
      [43]
      G. Iwase and K. Okumura, Nonisothermal investigation of reaction kinetics between electric arc furnace dust and calcium chloride under carbon-containing conditions, ISIJ Int., 61(2021), No. 10, p. 2483. doi: 10.2355/isijinternational.ISIJINT-2021-128
      [44]
      J.D. Huang, G.Q. Li, and X. Yang, Chlorination of ZnFe2O4 by molten MgCl2: Effect of adding CaCl2, J. Sustainable Metall., 9(2023), No. 3, p. 1253. doi: 10.1007/s40831-023-00727-9
      [45]
      J. Kang and T.H. Okabe, Removal of iron from titanium ore through selective chlorination using magnesium chloride, Mater. Trans., 54(2013), No. 8, p. 1444. doi: 10.2320/matertrans.M-M2013810
      [46]
      J.D. Huang, I. Sohn, Y. Kang, and X. Yang, Separation of Zn and Fe in ZnFe2O4 by reaction with MgCl2, Metall. Mater. Trans. B, 53(2022), No. 4, p. 2634. doi: 10.1007/s11663-022-02556-9
      [47]
      Y. Xue, X.M. Liu, N. Zhang, S. Guo, Z.Q. Xie, and C.B. Xu, A novel process for the treatment of steelmaking converter dust: Selective leaching and recovery of zinc sulfate and synthesis of iron oxides@HTCC photocatalysts by carbonizing carbohydrates, Hydrometallurgy, 217(2023), art. No. 106039. doi: 10.1016/j.hydromet.2023.106039
      [48]
      Y. Xue, X.M. Liu, C.B. Xu, and Y.H. Han, Hydrometallurgical detoxification and recycling of electric arc furnace dust, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2076. doi: 10.1007/s12613-023-2637-2
      [49]
      I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft mbH, 1989.
      [50]
      C. Murugesan, L. Okrasa, K. Ugendar, et al., Improved magnetic and electrical properties of Zn substituted nanocrystalline MgFe2O4 ferrite, J. Magn. Magn. Mater., 550(2022), art. No. 169066. doi: 10.1016/j.jmmm.2022.169066
      [51]
      S. Shaik, Z.Y. Chen, P.P. Sahoo, and C.R. Borra, Kinetics of solid-state reduction of chromite overburden, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2347. doi: 10.1007/s12613-023-2681-y
      [52]
      Q. Zhang, Y.S. Sun, Y.X. Han, Y.J. Li, and P. Gao, Reaction behavior and non-isothermal kinetics of suspension magnetization roasting of limonite and siderite, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 824. doi: 10.1007/s12613-022-2523-3
      [53]
      R.D. Seals, R. Alexander, L.T. Taylor, and J.G. Dillard, Core electron binding energy study of group IIb-VIIa compounds, Inorg. Chem., 12(1973), No. 10, p. 2485. doi: 10.1021/ic50128a059
      [54]
      L.R. Pederson, Two-dimensional chemical-state plot for lead using XPS, J. Electron. Spectrosc. Relat. Phenom., 28(1982), No. 2, p. 203. doi: 10.1016/0368-2048(82)85043-3

    Catalog


    • /

      返回文章
      返回