留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 11
Nov.  2024

图(8)

数据统计

分享

计量
  • 文章访问数:  965
  • HTML全文浏览量:  132
  • PDF下载量:  19
  • 被引次数: 0
Wencan Chen, Chao Li, Yehan Tao, Jie Lu, Jian Du, and Haisong Wang, Chitosan-based triboelectric materials for self-powered sensing at high temperatures, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2518-2527. https://doi.org/10.1007/s12613-024-2839-2
Cite this article as:
Wencan Chen, Chao Li, Yehan Tao, Jie Lu, Jian Du, and Haisong Wang, Chitosan-based triboelectric materials for self-powered sensing at high temperatures, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2518-2527. https://doi.org/10.1007/s12613-024-2839-2
引用本文 PDF XML SpringerLink
研究论文

壳聚糖基摩擦电材料用于高温环境下自供电传感



    * 共同第一作者
  • 通讯作者:

    杜健    E-mail: wanghs@dlpu.edu.cn

    王海松    E-mail: dujian01@dlpu.edu.cn

文章亮点

  • (1) 系统地研究了蒙脱土和木质素对摩擦电信号的影响规律
  • (2) 开发了抑制高温环境下摩擦电荷损失的新型壳聚糖/蒙脱土/木质素复合薄膜
  • (3) 总结并提出了适用于高温环境下摩擦电极所应具有的微观结构
  • 天然高聚物已被广泛用作构建可降解自供电传感系统的摩擦电材料,但在高温下电极表面摩擦电荷的湮灭限制了组装传感器的输出信号和灵敏度。为开发适用于高温环境下的天然多糖基传感材料,本文章设计了一种适用于较高温度环境中(25–70°C)的新型壳聚糖/蒙脱石/木质素(CML)复合薄膜,用作自供电传感系统组装中的摩擦正极层。系统地表征结果表明,天然聚合物和无机蒙脱土纳米粒子之间较强的分子间相互作用赋予了薄膜致密结构,该结构可以有效抑制表面摩擦电荷的挥发。经过电信号优化,CML-TENG的最高开路电压(Voc)和最大瞬时输出功率密度分别达到262 V和429 mW/m2。在不同温度下电信号输出实验结果表明,对于初始 TENG而言,当温度从室温增加到70°C时,输出电信号仅保留了39%,而优化后的CML-TENG 保留了66%,意味着本研究开发的新型摩擦电材料具有较好的温度适应性,本研究为抑制高温下摩擦电荷的湮灭提供了一种新策略。
  • Research Article

    Chitosan-based triboelectric materials for self-powered sensing at high temperatures

    + Author Affiliations
    • Although biopolymers have been widely utilized as triboelectric materials for the construction of self-powered sensing systems, the annihilation of triboelectric charges at high temperatures restricts the output signals and sensitivity of the assembled sensors. Herein, a novel chitosan/montmorillonite/lignin (CML) composite film was designed and employed as a tribopositive layer in the assembly of a self-powered sensing system for use under hot conditions (25–70°C). The dense contact surface resulting from the strong intermolecular interaction between biopolymers and nanofillers restrained the volatilization of induced electrons. The optimized CML-TENG delivered the highest open-circuit voltage (Voc) of 262 V and maximum instantaneous output power of 429 mW/m2. Pristine CH-TENG retained only 39% of its initial Voc at 70°C, whereas the optimized CM5L3-TENG retained 66% of its initial Voc. Our work provides a new strategy for suppressing the annihilation of triboelectric charges at high temperatures, thus boosting the development of self-powered sensing devices for application under hot conditions.
    • loading
    • Supplementary Information-s12613-024-2839-2.docx
      IJM-10-2023-0983.R2material_Supporting_Information 240912 f-zj j.mp4
    • [1]
      M. Shanbedi, H. Ardebili, and A. Karim, Polymer-based triboelectric nanogenerators: Materials, characterization, and applications, Prog. Polym. Sci., 144(2023), art. No. 101723. doi: 10.1016/j.progpolymsci.2023.101723
      [2]
      Y.T. Wang, Z.H. Li, H. Fu, and B.G. Xu, Sustainable triboelectric nanogenerators based on recycled materials for biomechanical energy harvesting and self-powered sensing, Nano Energy, 115(2023), art. No. 108717. doi: 10.1016/j.nanoen.2023.108717
      [3]
      N.N. Wang, W.H. Zhang, Z.B. Li, et al., Dual-electric-polarity augmented cyanoethyl cellulose-based triboelectric nanogenerator with ultra-high triboelectric charge density and enhanced electrical output property at high humidity, Nano Energy, 103(2022), art. No. 107748. doi: 10.1016/j.nanoen.2022.107748
      [4]
      L.L. Shang, Z.P. Wu, X.Y. Li, et al., A breathable and highly impact-resistant shear-thickened fluid (STF) based TENG via hierarchical liquid-flow spinning for intelligent protection, Nano Energy, 118(2023), art. No. 108955. doi: 10.1016/j.nanoen.2023.108955
      [5]
      X.H. Ge, N. Hu, F.J. Yan, and Y. Wang, Development and applications of electrospun nanofiber-based triboelectric nanogenerators, Nano Energy, 112(2023), art. No. 108444. doi: 10.1016/j.nanoen.2023.108444
      [6]
      N.N. Wang, Y.B. Zheng, Y.G. Feng, F. Zhou, and D.A. Wang, Biofilm material based triboelectric nanogenerator with high output performance in 95% humidity environment, Nano Energy, 77(2020), art. No. 105088. doi: 10.1016/j.nanoen.2020.105088
      [7]
      F.R. Fan, Z.Q. Tian, and Z.L. Wang, Flexible triboelectric generator, Nano Energy, 1(2012), No. 2, p. 328. doi: 10.1016/j.nanoen.2012.01.004
      [8]
      Y.M. Li, S.E. Chen, H. Yan, et al., Biodegradable, transparent, and antibacterial alginate-based triboelectric nanogenerator for energy harvesting and tactile sensing, Chem. Eng. J., 468(2023), art. No. 143572. doi: 10.1016/j.cej.2023.143572
      [9]
      N. Wang, Y. Liu, Y. Feng, et al., Revamping triboelectric output by deep trap construction, Adv. Mater., 36(2023), No. 13, art. No. 2303389.
      [10]
      X. Suo, B. Li, H.F. Ji, et al., Dielectric layer doping for enhanced triboelectric nanogenerators, Nano Energy, 114(2023), art. No. 108651. doi: 10.1016/j.nanoen.2023.108651
      [11]
      T. Charoonsuk, S. Pongampai, P. Pakawanit, and N. Vittayakorn, Achieving a highly efficient chitosan-based triboelectric nanogenerator via adding organic proteins: Influence of morphology and molecular structure, Nano Energy, 89(2021), art. No. 106430. doi: 10.1016/j.nanoen.2021.106430
      [12]
      H.J. Xiang, J. Yang, X. Cao, and N. Wang, Flexible and highly sensitive triboelectric nanogenerator with magnetic nanocomposites for cultural heritage conservation and human motion monitoring, Nano Energy, 101(2022), art. No. 107570. doi: 10.1016/j.nanoen.2022.107570
      [13]
      X.H. Zhang, J.W. Xu, X.M. Zhang, et al., Simultaneous evaporation and foaming for batch coaxial extrusion of liquid metal/polydimethylsiloxane porous fibrous TENG, Adv. Fiber Mater., 5(2023), No. 6, p. 1949. doi: 10.1007/s42765-023-00314-3
      [14]
      Z.Y. Xu, D.Z. Zhang, X.H. Liu, Y. Yang, X.W. Wang, and Q.Z. Xue, Self-powered multifunctional monitoring and analysis system based on dual-triboelectric nanogenerator and chitosan/activated carbon film humidity sensor, Nano Energy, 94(2022), art. No. 106881. doi: 10.1016/j.nanoen.2021.106881
      [15]
      J.N. Kim, J. Lee, T.W. Go, et al., Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator, Nano Energy, 75(2020), art. No. 104904. doi: 10.1016/j.nanoen.2020.104904
      [16]
      T.G. Weldemhret, D.W. Lee, M.N. Prabhakar, Y.T. Park, and J.I. Song, Polyurethane foams coated with phosphorus-doped mesoporous carbon for flame-retardant triboelectric nanogenerators, ACS Appl. Nano Mater., 5(2022), No. 9, p. 12464. doi: 10.1021/acsanm.2c01999
      [17]
      Z.H. Liu, B.Z. Li, J.S. Yuan, and Y.J. Yuan, Creative biological lignin conversion routes toward lignin valorization, Trends Biotechnol., 40(2022), No. 12, p. 1550. doi: 10.1016/j.tibtech.2022.09.014
      [18]
      N.R. Tanguy, M. Rana, A.A. Khan, et al., Natural lignocellulosic nanofibrils as tribonegative materials for self-powered wireless electronics, Nano Energy, 98(2022), art. No. 107337. doi: 10.1016/j.nanoen.2022.107337
      [19]
      R.J. Zhang, R.H. Xia, X. Cao, and N. Wang, Nutshell powder-based green triboelectric nanogenerator for wind energy harvesting, Adv. Mater. Interfaces, 9(2022), No. 21, art. No. 2200293. doi: 10.1002/admi.202200293
      [20]
      X. Zhao, L.X. Xu, X.C. Xun, F.F. Gao, Q.L. Liao, and Y. Zhang, Dynamic behavior of tunneling triboelectric charges in two-dimensional materials, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1801. doi: 10.1007/s12613-023-2659-9
      [21]
      A. Yar, A. Okbaz, and Ş. Parlayıcı, A biocompatible, eco-friendly, and high-performance triboelectric nanogenerator based on sepiolite, bentonite, and Kaolin decorated CS composite film, Nano Energy, 110(2023), art. No. 108354. doi: 10.1016/j.nanoen.2023.108354
      [22]
      Y. Shao, C.P. Feng, B.W. Deng, B. Yin, and M.B. Yang, Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant, Nano Energy, 62(2019), p. 620. doi: 10.1016/j.nanoen.2019.05.078
      [23]
      X.C. Wang, N.J. Hu, J. Yang, et al., High-performance triboelectric nanogenerator based on ZrB2/polydimethylsiloxane for metal corrosion protection, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1957. doi: 10.1007/s12613-023-2626-5
      [24]
      C. Gao, T. Liu, B. Luo, et al., Cellulosic triboelectric materials for stable energy harvesting from hot and humid conditions, Nano Energy, 111(2023), art. No. 108426. doi: 10.1016/j.nanoen.2023.108426
      [25]
      P. Widsten, T. Tamminen, A. Paajanen, T. Hakkarainen, and T.Liitiä, Modified and unmodified technical lignins as flame retardants for polypropylene, Holzforschung, 75(2021), No. 6, p. 584. doi: 10.1515/hf-2020-0147
      [26]
      N.N. Wang, Y.G. Feng, Y.B. Zheng, et al., New hydrogen bonding enhanced polyvinyl alcohol based self-charged medical mask with superior charge retention and moisture resistance performances, Adv. Funct. Mater., 31(2021), No. 14, art. No. 2009172. doi: 10.1002/adfm.202009172
      [27]
      W. Cho, J.R. Shields, L. Dubrulle, et al., Ion-complexed chitosan formulations as effective fire-retardant coatings for wood substrates, Polym. Degrad. Stab., 197(2022), art. No. 109870. doi: 10.1016/j.polymdegradstab.2022.109870
      [28]
      W. Tan, Y.H. Zhang, Y.S. Szeto, and L.B. Liao, A novel method to prepare chitosan/montmorillonite nanocomposites in the presence of hydroxy-aluminum oligomeric cations, Compos. Sci. Technol., 68(2008), No. 14, p. 2917. doi: 10.1016/j.compscitech.2007.10.007
      [29]
      M. Kumar, S.N. Upadhyay, and P.K. Mishra, Effect of montmorillonite clay on pyrolysis of paper mill waste, Bioresour. Technol., 307(2020), art. No. 123161. doi: 10.1016/j.biortech.2020.123161
      [30]
      S.M. Zhang, C. Zheng, M.L. Li, et al., Sodium lignosulfonate cross-linked bioprosthetic heart valve materials for enhanced cytocompatibility, improved hemocompatibility, and reduced calcification, Composites Part B, 234(2022), art. No. 109669. doi: 10.1016/j.compositesb.2022.109669
      [31]
      T. Matsumoto, S. Mori, T. Ohashi, C.Y. He, and T. Nishino, Stress-transfer analyses in cellulose nanofiber/montmorillonite nanocomposites with X-ray diffraction and chemical interaction between cellulose nanofiber and montmorillonite, Cellulose, 29(2022), No. 5, p. 2949. doi: 10.1007/s10570-022-04423-x
      [32]
      L.Y. Wang, X.X. Ji, Y. Cheng, et al., All-biodegradable soy protein isolate/lignin composite cross-linked by oxidized sucrose as agricultural mulch films for green farming, Int. J. Biol. Macromol., 223(2022), p. 120. doi: 10.1016/j.ijbiomac.2022.10.251
      [33]
      M. Michelin, A.M. Marques, L.M. Pastrana, J.A. Teixeira, and M.A. Cerqueira, Carboxymethyl cellulose-based films: Effect of organosolv lignin incorporation on physicochemical and antioxidant properties, J. Food Eng., 285(2020), art. No. 110107. doi: 10.1016/j.jfoodeng.2020.110107
      [34]
      H.Y. Chen, J.H. Zhan, L. Man, et al., High foliar retention tannic acid/Fe3+ functionalized Ti-pillared montmorillonite pesticide formulation with pH-responsibility and high UV stability, Appl. Surf. Sci., 620(2023), art. No. 156838. doi: 10.1016/j.apsusc.2023.156838
      [35]
      S.F. Hosseini, J. Ghaderi, and M.C. Gómez-Guillén, Tailoring physico-mechanical and antimicrobial/antioxidant properties of biopolymeric films by cinnamaldehyde-loaded chitosan nanoparticles and their application in packaging of fresh rainbow trout fillets, Food Hydrocoll., 124(2022), art. No. 107249. doi: 10.1016/j.foodhyd.2021.107249
      [36]
      Y.L. Ren, T. Tian, L.N. Jiang, and Y.B. Guo, Fabrication of chitosan-based intumescent flame retardant coating for improving flame retardancy of polyacrylonitrile fabric, Molecules, 24(2019), No. 20, art. No. 3749. doi: 10.3390/molecules24203749
      [37]
      N. Tahari, P.L. de Hoyos-Martinez, N. Izaguirre, et al., Preparation of chitosan/tannin and montmorillonite films as adsorbents for methyl orange dye removal, Int. J. Biol. Macromol., 210(2022), p. 94. doi: 10.1016/j.ijbiomac.2022.04.231
      [38]
      S.W. Cui, J.P. Wang, L.W. Mi, et al., A new synergetic system based on triboelectric nanogenerator and corrosion inhibitor for enhanced anticorrosion performance, Nano Energy, 91(2022), art. No. 106696. doi: 10.1016/j.nanoen.2021.106696
      [39]
      F. Jiang, L. Zhan, J.P. Lee, and P.S. Lee, Triboelectric nanogenerators based on fluid medium: From fundamental mechanisms toward multifunctional applications, Adv. Mater., 36(2024), No. 6, art. No. e2308197. doi: 10.1002/adma.202308197
      [40]
      C. Xu, J.R. Yu, Z.W. Huo, Y.F. Wang, Q.J. Sun, and Z.L. Wang, Pursuing the tribovoltaic effect for direct-current triboelectric nanogenerators, Energy Environ. Sci., 16(2023), No. 3, p. 983. doi: 10.1039/D2EE04019K
      [41]
      Y. Cheng, W.D. Zhu, X.F. Lu, and C. Wang, Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing, Nano Energy, 98(2022), art. No. 107229. doi: 10.1016/j.nanoen.2022.107229
      [42]
      Y.Y. Gao, G.X. Liu, T.Z. Bu, et al., MXene based mechanically and electrically enhanced film for triboelectric nanogenerator, Nano Res., 14(2021), No. 12, p. 4833. doi: 10.1007/s12274-021-3437-5
      [43]
      X.J. Zhang, S.S. Tang, R. Ma, et al., High-performance multimodal smart textile for artificial sensation and health monitoring, Nano Energy, 103(2022), art. No. 107778. doi: 10.1016/j.nanoen.2022.107778

    Catalog


    • /

      返回文章
      返回