Cite this article as: |
Yubo Huang, Ning Xu, Huaile Lu, Yang Ren, Shilei Li, and Yandong Wang, Microstructures and micromechanical behaviors of high-entropy alloys investigated by synchrotron X-ray and neutron diffraction techniques: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1333-1349. https://doi.org/10.1007/s12613-024-2840-9 |
李时磊 E-mail: lishilei@ustb.edu.cn
王沿东 E-mail: ydwang@ustb.edu.cn
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
|
[2] |
J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mat., 31(2006), No. 6, p. 633. doi: 10.3166/acsm.31.633-648
|
[3] |
B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
|
[4] |
O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698. doi: 10.1016/j.intermet.2011.01.004
|
[5] |
M. Feuerbacher, M. Heidelmann, and C. Thomas, Hexagonal high-entropy alloys, Mater. Res. Lett., 3(2015), No. 1, p. 1. doi: 10.1080/21663831.2014.951493
|
[6] |
M.H. Tsai and J.W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett., 2(2014), No. 3, p. 107. doi: 10.1080/21663831.2014.912690
|
[7] |
W. Guo, W. Dmowski, J.Y. Noh, P. Rack, P.K. Liaw, and T. Egami, Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study, Metall. Mater. Trans. A, 44(2013), No. 5, p. 1994. doi: 10.1007/s11661-012-1474-0
|
[8] |
P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, et al., Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J. Alloys Compd., 587(2014), p. 544. doi: 10.1016/j.jallcom.2013.10.237
|
[9] |
L. Patriarca, A. Ojha, H. Sehitoglu, and Y.I. Chumlyakov, Slip nucleation in single crystal FeNiCoCrMn high entropy alloy, Scripta Mater., 112(2016), p. 54. doi: 10.1016/j.scriptamat.2015.09.009
|
[10] |
K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater., 61(2013), No. 13, p. 4887. doi: 10.1016/j.actamat.2013.04.058
|
[11] |
S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Curr. Sci., 85(2003), No. 5, p. 1404.
|
[12] |
D. Liu, Q. Yu, S. Kabra, et al., Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin, Science, 378(2022), No. 6623, p. 978. doi: 10.1126/science.abp8070
|
[13] |
B. Xiao, J. Zhang, S.F. Liu, et al., Ultrahigh intermediate-temperature strength and good tensile plasticity in chemically complex intermetallic alloys via lamellar architectures, Acta Mater., 262(2024), art. No. 119459. doi: 10.1016/j.actamat.2023.119459
|
[14] |
C.L. Zhang, L.F. Huang, S.X. Li, K. Li, S.Y. Lu, and J.F. Li, Improved corrosion resistance of laser melting deposited CoCrFeNi-series high-entropy alloys by Al addition, Corros. Sci., 225(2023), art. No. 111599. doi: 10.1016/j.corsci.2023.111599
|
[15] |
J.Y. Zhang, T.H. Chou, Y.H. Zhou, J.H. Luan, Y.L. Zhao, and T. Yang, Corrosion-resistant L12-strengthened high-entropy alloy with high strength and large ductility, Corros. Sci., 225(2023), art. No. 111593. doi: 10.1016/j.corsci.2023.111593
|
[16] |
O. El Atwani, H.T. Vo, M.A. Tunes, et al., A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments, Nat. Commun., 14(2023), No. 1, art. No. 2516. doi: 10.1038/s41467-023-38000-y
|
[17] |
R. Feng, Y. Rao, C.H. Liu, et al., Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy, Nat. Commun., 12(2021), art. No. 3588. doi: 10.1038/s41467-021-23689-6
|
[18] |
Q.Y. Lin, J.P. Liu, X.H. An, H. Wang, Y. Zhang, and X.Z. Liao, Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy, Mater. Res. Lett., 6(2018), No. 4, p. 236. doi: 10.1080/21663831.2018.1434250
|
[19] |
B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, et al., Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun., 7(2016), art. No. 10602. doi: 10.1038/ncomms10602
|
[20] |
L.H. Mills, M.G. Emigh, C.H. Frey, et al., Temperature-dependent tensile behavior of the HfNbTaTiZr multi-principal element alloy, Acta Mater., 245(2023), art. No. 118618. doi: 10.1016/j.actamat.2022.118618
|
[21] |
A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang, High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams, JOM, 66(2014), No. 10, p. 1984. doi: 10.1007/s11837-014-1085-x
|
[22] |
J.B. Seol, J.W. Bae, Z. Li, et al., Boron doped ultrastrong and ductile high-entropy alloys, Acta Mater., 151(2018), p. 366. doi: 10.1016/j.actamat.2018.04.004
|
[23] |
Z.Q. Wang, H.H. Wu, Y. Wu, et al., Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering, Mater. Today, 54(2022), p. 83. doi: 10.1016/j.mattod.2022.02.006
|
[24] |
T. Yang, Y.L. Zhao, Y. Tong, et al., Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science, 362(2018), No. 6417, p. 933. doi: 10.1126/science.aas8815
|
[25] |
D.D. Zhang, J. Kuang, H. Xue, J.Y. Zhang, G. Liu, and J. Sun, A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability, J. Mater. Sci. Technol., 132(2023), p. 201. doi: 10.1016/j.jmst.2022.06.012
|
[26] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature, 534(2016), No. 7606, p. 227. doi: 10.1038/nature17981
|
[27] |
Y. Yang, T.Y. Chen, L.Z. Tan, et al., Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy, Nature, 595(2021), No. 7866, p. 245. doi: 10.1038/s41586-021-03607-y
|
[28] |
D.Y. Lin, L.Y. Xu, H.Y. Jing, et al., A strong, ductile, high-entropy FeCoCrNi alloy with fine grains fabricated via additive manufacturing and a single cold deformation and annealing cycle, Addit. Manuf., 36(2020), art. No. 101591. doi: 10.1016/j.addma.2020.101591
|
[29] |
S.J. Sun, Y.Z. Tian, H.R. Lin, et al., Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement, Mater. Sci. Eng. A, 712(2018), p. 603. doi: 10.1016/j.msea.2017.12.022
|
[30] |
M.X. Yang, D.S. Yan, F.P. Yuan, P. Jiang, E. Ma, and X.L. Wu, Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength, Proc. Natl. Acad. Sci. USA, 115(2018), No. 28, p. 7224. doi: 10.1073/pnas.1807817115
|
[31] |
E. Ma and X.L. Wu, Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy, Nat. Commun., 10(2019), No. 1, art. No. 5623. doi: 10.1038/s41467-019-13311-1
|
[32] |
P.J. Shi, R.G. Li, Y. Li, et al., Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 373(2021), No. 6557, p. 912. doi: 10.1126/science.abf6986
|
[33] |
S. Qin, M.X. Yang, P. Jiang, et al., Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility, Acta Mater., 230(2022), art. No. 117847. doi: 10.1016/j.actamat.2022.117847
|
[34] |
Q.S. Pan, L.X. Zhang, R. Feng, et al., Gradient cell-structured high-entropy alloy with exceptional strength and ductility, Science, 374(2021), No. 6570, p. 984. doi: 10.1126/science.abj8114
|
[35] |
Q.S. Pan, M.X. Yang, R. Feng, et al., Atomic faulting induced exceptional cryogenic strain hardening in gradient cell-structured alloy, Science, 382(2023), No. 6667, p. 185. doi: 10.1126/science.adj3974
|
[36] |
L. Wang, J. Ding, S.S. Chen, et al., Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys, Nat. Mater., 22(2023), No. 8, p. 950. doi: 10.1038/s41563-023-01517-0
|
[37] |
P.Y. Cao, J. Wang, P. Jiang, Y.J. Wang, F.P. Yuan, and X.L. Wu, Prediction of chemical short-range order in high-/medium-entropy alloys, J. Mater. Sci. Technol., 169(2024), p. 115. doi: 10.1016/j.jmst.2023.05.072
|
[38] |
K. An and S.C. Fu, High Entropy Alloys : Advanced Synchrotron X-ray and Neutron Scattering Studies, Elsevier, Amsterdam, 2020, p. 381.
|
[39] |
F.R. Elder, A.M. Gurewitsch, R.V. Langmuir, and H.C. Pollock, Radiation from electrons in a synchrotron, Phys. Rev., 71(1947), No. 11, p. 829.
|
[40] |
M.T. Hutchings, Introduction to the Characterization of Residual Stress by Neutron Diffraction, FL: Taylor & Francis, Boca Raton, 2005.
|
[41] |
W. Reimers, A.R. Rita Pyzalla, A. Schreyer, and H. Clemens, Neutrons and Synchrotron Radiation in Engineering Materials Science : From Fundamentals to Material and Component Characterization, Wiley-VCH, Weinheim, 2008.
|
[42] |
L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, and N.G. Jones, An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy, Acta Mater., 122(2017), p. 11. doi: 10.1016/j.actamat.2016.09.032
|
[43] |
F.X. Zhang, S.J. Zhao, K. Jin, et al., Local structure and short-range order in a NiCoCr solid solution alloy, Phys. Rev. Lett., 118(2017), No. 20, art. No. 205501. doi: 10.1103/PhysRevLett.118.205501
|
[44] |
R.K. Nutor, T.D. Xu, X.L. Wang, et al., Liquid helium temperature deformation and local atomic structure of CoNiV medium entropy alloy, Mater. Today Commun., 30(2022), art. No. 103141. doi: 10.1016/j.mtcomm.2022.103141
|
[45] |
F.X. Zhang, Y. Tong, K. Jin, et al., Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy, Mater. Res. Lett., 6(2018), No. 8, p. 450. doi: 10.1080/21663831.2018.1478332
|
[46] |
Y. Tong, K. Jin, H. Bei, et al., Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction, Mater. Des., 155(2018), p. 1. doi: 10.1016/j.matdes.2018.05.056
|
[47] |
N. Derimow, L. Santodonato, R. Mills, and R. Abbaschian, In-situ imaging of liquid phase separation in molten alloys using cold neutrons, J. Imaging, 4(2017), No. 1, art. No. 5. doi: 10.3390/jimaging4010005
|
[48] |
N. Derimow, L.J. Santodonato, B.E. MacDonald, B. Le, E.J. Lavernia, and R. Abbaschian, In-situ imaging of molten high-entropy alloys using cold neutrons, J. Imaging, 5(2019), No. 2, art. No. 29. doi: 10.3390/jimaging5020029
|
[49] |
J. Yan, W.X. Dong, P.J. Shi, et al., Synchrotron X-ray study of heterostructured materials: A review, JOM, 75(2023), No. 5, p. 1423. doi: 10.1007/s11837-023-05711-y
|
[50] |
N.R. Jaladurgam, H.J. Li, J. Kelleher, C. Persson, A. Steuwer, and M.H. Colliander, Microstructure-dependent deformation behaviour of a low γ' volume fraction Ni-base superalloy studied by in situ neutron diffraction, Acta Mater., 183(2020), p. 182. doi: 10.1016/j.actamat.2019.11.003
|
[51] |
H.Y. Chen, Y.D. Wang, Z.H. Nie, et al., Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals, Nat. Mater., 19(2020), No. 7, p. 712. doi: 10.1038/s41563-020-0645-4
|
[52] |
H.Y. He, M. Naeem, F. Zhang, et al., Stacking fault driven phase transformation in CrCoNi medium entropy alloy, Nano Lett., 21(2021), No. 3, p. 1419. doi: 10.1021/acs.nanolett.0c04244
|
[53] |
O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development–properties–application, Int. J. Plast., 16(2000), No. 10-11, p. 1391. doi: 10.1016/S0749-6419(00)00015-2
|
[54] |
Y.H. Zhang, Y. Zhuang, A. Hu, J.J. Kai, and C.T. Liu, The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys, Scripta Mater., 130(2017), p. 96. doi: 10.1016/j.scriptamat.2016.11.014
|
[55] |
B.C. De Cooman, Y. Estrin, and S.K. Kim, Twinning-induced plasticity (TWIP) steels, Acta Mater., 142(2018), p. 283. doi: 10.1016/j.actamat.2017.06.046
|
[56] |
D.X. Wei, X.Q. Li, S. Schönecker, et al., Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys, Acta Mater., 181(2019), p. 318. doi: 10.1016/j.actamat.2019.09.050
|
[57] |
W. Woo, Y.S. Kim, H.B. Chae, et al., Competitive strengthening between dislocation slip and twinning in cast-wrought and additively manufactured CrCoNi medium entropy alloys, Acta Mater., 246(2023), art. No. 118699. doi: 10.1016/j.actamat.2023.118699
|
[58] |
W. Woo, J.S. Jeong, D.K. Kim, et al., Stacking fault energy analyses of additively manufactured stainless steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction, Sci. Rep., 10(2020), No. 1, art. No. 1350. doi: 10.1038/s41598-020-58273-3
|
[59] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater., 128(2017), p. 292. doi: 10.1016/j.actamat.2017.02.036
|
[60] |
S.F. Liu, Y. Wu, H.T. Wang, et al., Stacking fault energy of face-centered-cubic high entropy alloys, Intermetallics, 93(2018), p. 269. doi: 10.1016/j.intermet.2017.10.004
|
[61] |
L. Tang, F.Q. Jiang, J.S. Wróbel, et al. , In situ neutron diffraction unravels deformation mechanisms of a strong and ductile FeCrNi medium entropy alloy, J. Mater. Sci. Technol., 116(2022), p. 103. doi: 10.1016/j.jmst.2021.10.034
|
[62] |
Y.Q. Wang, B. Liu, K. Yan, et al., Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction, Acta Mater., 154(2018), p. 79. doi: 10.1016/j.actamat.2018.05.013
|
[63] |
A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, JOM, 65(2013), No. 12, p. 1780. doi: 10.1007/s11837-013-0771-4
|
[64] |
N.L. Okamoto, S. Fujimoto, Y. Kambara, et al., Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy, Sci. Rep., 6(2016), art. No. 35863. doi: 10.1038/srep35863
|
[65] |
Q.Q. Ding, Y. Zhang, X. Chen, et al., Tuning element distribution, structure and properties by composition in high-entropy alloys, Nature, 574(2019), p. 223. doi: 10.1038/s41586-019-1617-1
|
[66] |
S.F. Liu, Y. Wu, H.T. Wang, et al., Transformation-reinforced high-entropy alloys with superior mechanical properties via tailoring stacking fault energy, J. Alloys Compd., 792(2019), p. 444. doi: 10.1016/j.jallcom.2019.04.035
|
[67] |
J.B. Liu, C.X. Chen, Y.Q. Xu, et al., Deformation twinning behaviors of the low stacking fault energy high-entropy alloy: An in situ TEM study, Scripta Mater., 137(2017), p. 9. doi: 10.1016/j.scriptamat.2017.05.001
|
[68] |
X.D. Xu, P. Liu, Z. Tang, et al., Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi, Acta Mater., 144(2018), p. 107. doi: 10.1016/j.actamat.2017.10.050
|
[69] |
L. Tang, K. Yan, B. Cai, et al., Deformation mechanisms of FeCoCrNiMo0.2 high entropy alloy at 77 and 15K, Scripta Mater., 178(2020), p. 166. doi: 10.1016/j.scriptamat.2019.11.026
|
[70] |
B. Cai, B. Liu, S. Kabra, et al., Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction, Acta Mater., 127(2017), p. 471. doi: 10.1016/j.actamat.2017.01.034
|
[71] |
D.X. Wei, W. Gong, T. Tsuru, et al. Si-addition contributes to overcoming the strength-ductility trade-off in high-entropy alloys, Int. J. Plast., 159(2022), art. No. 103443. doi: 10.1016/j.ijplas.2022.103443
|
[72] |
M. Frank, S.S. Nene, Y. Chen, et al., Correlating work hardening with co-activation of stacking fault strengthening and transformation in a high entropy alloy using in situ neutron diffraction, Sci. Rep., 10(2020), No. 1, art. No. 22263. doi: 10.1038/s41598-020-79492-8
|
[73] |
S. Picak, J. Liu, C. Hayrettin, et al., Anomalous work hardening behavior of Fe40Mn40Cr10Co10 high entropy alloy single crystals deformed by twinning and slip, Acta Mater., 181(2019), p. 555. doi: 10.1016/j.actamat.2019.09.048
|
[74] |
X. Wang, R.R. De Vecchis, C.Y. Li, et al., Design metastability in high-entropy alloys by tailoring unstable fault energies, Sci. Adv., 8(2022), No. 36, art. No. eabo7333. doi: 10.1126/sciadv.abo7333
|
[75] |
J. Couzinie, L. Lilensten, Y. Champion, G. Dirras, L. Perrière, and I. Guillot, On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy, Mater. Sci. Eng. A, 645(2015), p. 255. doi: 10.1016/j.msea.2015.08.024
|
[76] |
G. Dirras, L. Lilensten, P. Djemia, et al., Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy, Mater. Sci. Eng. A, 654(2016), p. 30. doi: 10.1016/j.msea.2015.12.017
|
[77] |
Y.D. Wu, Y.H. Cai, T. Wang, et al., A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Mater. Lett., 130(2014), p. 277. doi: 10.1016/j.matlet.2014.05.134
|
[78] |
L. Qi and D.C. Chrzan, Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys, Phys. Rev. Lett., 112(2014), No. 11, art. No. 115503. doi: 10.1103/PhysRevLett.112.115503
|
[79] |
S. Sheikh, S. Shafeie, Q. Hu, et al., Alloy design for intrinsically ductile refractory high-entropy alloys, J. Appl. Phys., 120(2016), No. 16, art. No. 164902. doi: 10.1063/1.4966659
|
[80] |
F.Y. Tian, L.K. Varga, N.X. Chen, J. Shen, and L. Vitos, Ab initio design of elastically isotropic TiZrNbMoV high-entropy alloys, J. Alloys Compd., 599(2014), p. 19. doi: 10.1016/j.jallcom.2014.01.237
|
[81] |
H.L. Huang, Y. Wu, J.Y. He, et al., Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering, Adv. Mater., 29(2017), No. 30, art. No. 1701678. doi: 10.1002/adma.201701678
|
[82] |
B. Chen, S.Z. Li, H.X. Zong, X.D. Ding, J. Sun, and E. Ma, Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys, Proc. Natl. Acad. Sci. USA, 117(2020), No. 28, p. 16199. doi: 10.1073/pnas.1919136117
|
[83] |
X.Y. Li, Z. Zhang, and J.W. Wang, Deformation twinning in body-centered cubic metals and alloys, Prog. Mater. Sci., 139(2023), art. No. 101160. doi: 10.1016/j.pmatsci.2023.101160
|
[84] |
B. Chen, S.Z. Li, J. Ding, X.D. Ding, J. Sun, and E. Ma, Correlating dislocation mobility with local lattice distortion in refractory multi-principal element alloys, Scripta Mater., 222(2023), art. No. 115048. doi: 10.1016/j.scriptamat.2022.115048
|
[85] |
X.L. Wu, Chemical short-range orders in high-/ medium-entropy alloys, J. Mater. Sci. Technol., 147(2023), p. 189. doi: 10.1016/j.jmst.2022.10.070
|
[86] |
Y.H. Wang, M.Y. Jiao, Y. Wu, et al., Enhancing properties of high-entropy alloys via manipulation of local chemical ordering, J. Mater. Sci. Technol., 180(2024), p. 23. doi: 10.1016/j.jmst.2023.10.003
|
[87] |
J. Ding and Z.J. Wang, Local chemical order in high-entropy alloys, Acta Metall. Sin., 57(2021), No. 4, p. 413.
|
[88] |
R.P. Zhang, S.T. Zhao, J. Ding, et al., Short-range order and its impact on the CrCoNi medium-entropy alloy, Nature, 581(2020), No. 7808, p. 283. doi: 10.1038/s41586-020-2275-z
|
[89] |
X.F. Chen, Q. Wang, Z.Y. Cheng, et al., Direct observation of chemical short-range order in a medium-entropy alloy, Nature, 592(2021), No. 7856, p. 712. doi: 10.1038/s41586-021-03428-z
|
[90] |
Y.Q. Bu, Y. Wu, Z.F. Lei, et al., Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys, Mater. Today, 46(2021), p. 28. doi: 10.1016/j.mattod.2021.02.022
|
[91] |
Y. Wu, F. Zhang, F.S. Li, et al., Local chemical fluctuation mediated ultra-sluggish martensitic transformation in high-entropy intermetallics, Mater. Horiz., 9(2022), No. 2, p. 804. doi: 10.1039/D1MH01612A
|
[92] |
J.Y. He, Q. Wang, H.S. Zhang, et al., Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy, Sci. Bull., 63(2018), No. 6, p. 362. doi: 10.1016/j.scib.2018.01.022
|
[93] |
C.C. Juan, M.H. Tsai, C.W. Tsai, et al., Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining, Mater. Lett., 184(2016), p. 200. doi: 10.1016/j.matlet.2016.08.060
|
[94] |
P. Sathiyamoorthi, J. Moon, J.W. Bae, P. Asghari-Rad, and H.S. Kim, Superior cryogenic tensile properties of ultrafine-grained CoCrNi medium-entropy alloy produced by high-pressure torsion and annealing, Scripta Mater., 163(2019), p. 152. doi: 10.1016/j.scriptamat.2019.01.016
|
[95] |
Z.M. Li, C.C. Tasan, K.G. Pradeep, and D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior, Acta Mater., 131(2017), p. 323. doi: 10.1016/j.actamat.2017.03.069
|
[96] |
P. Asghari-Rad, P. Sathiyamoorthi, J.W. Bae, et al., Effect of initial grain size on deformation mechanism during high-pressure torsion in V10Cr15Mn5Fe35Co10Ni25 high-entropy alloy, Adv. Eng. Mater., 22(2020), No. 1, art. No. 1900587. doi: 10.1002/adem.201900587
|
[97] |
B. Schuh, F. Mendez-Martin, B. Völker, et al., Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater., 96(2015), p. 258. doi: 10.1016/j.actamat.2015.06.025
|
[98] |
P. Sathiyamoorthi and H.S. Kim, Nanocrystalline High Entropy Alloys : Processing and Properties, Elsevier, Amsterdam, 2021, p. 372.
|
[99] |
M. Jin, A.M. Minor, E.A. Stach, and J.W. Morris, Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature, Acta Mater., 52(2004), No. 18, p. 5381. doi: 10.1016/j.actamat.2004.07.044
|
[100] |
X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu, Extraordinary strain hardening by gradient structure, Proc. Natl. Acad. Sci. USA, 111(2014), No. 20, p. 7197. doi: 10.1073/pnas.1324069111
|
[101] |
Z. Cheng, H.F. Zhou, Q.H. Lu, H.J. Gao, and L. Lu, Extra strengthening and work hardening in gradient nanotwinned metals, Science, 362(2018), No. 6414, art. No. eaau1925. doi: 10.1126/science.aau1925
|
[102] |
S.K. Guo, Z.L. Ma, G.H. Xia, et al., Pursuing ultrastrong and ductile medium entropy alloys via architecting nanoprecipitates-enhanced hierarchical heterostructure, Acta Mater., 263(2024), art. No. 119492. doi: 10.1016/j.actamat.2023.119492
|
[103] |
J. Su, D. Raabe, and Z.M. Li, Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP–TWIP high-entropy alloy, Acta Mater., 163(2019), p. 40. doi: 10.1016/j.actamat.2018.10.017
|
[104] |
Y.D. Wang, Y.K. Wang, S.L. Li, and R.G. Li, Synchrotron-based high-energy X-ray diffraction and microdiffraction investigations on the mechanical heterogeneity of heterostructured metals, Scripta Mater., 224(2023), art. No. 115144. doi: 10.1016/j.scriptamat.2022.115144
|
[105] |
F.J. Wang, Y. Zhang, and G.L. Chen, Atomic packing efficiency and phase transition in a high entropy alloy, J. Alloys Compd., 478(2009), No. 1-2, p. 321. doi: 10.1016/j.jallcom.2008.11.059
|
[106] |
Y. Wu, W.H. Liu, X.L. Wang, et al. , In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy, Appl. Phys. Lett., 104(2014), No. 5, art. No. 051910. doi: 10.1063/1.4863748
|
[107] |
E. Huang, D.J. Yu, J. Yeh, C. Lee, K. An, and S. Tu, A study of lattice elasticity from low entropy metals to medium and high entropy alloys, Scripta Mater., 101(2015), p. 32. doi: 10.1016/j.scriptamat.2015.01.011
|
[108] |
Q.F. He, J.G. Wang, H.A. Chen, et al., A highly distorted ultraelastic chemically complex Elinvar alloy, Nature, 602(2022), No. 7896, p. 251. doi: 10.1038/s41586-021-04309-1
|
[109] |
G. Ribárik, B. Jóni, and T. Ungár, The convolutional multiple whole profile (CMWP) fitting method, a global optimization procedure for microstructure determination, Crystals, 10(2020), No. 7, art. No. 623. doi: 10.3390/cryst10070623
|
[110] |
G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1(1953), No. 1, p. 22. doi: 10.1016/0001-6160(53)90006-6
|
[111] |
B.E. Warren and B.L. Averbach, The separation of cold-work distortion and particle size broadening in X-ray patterns, J. Appl. Phys., 23(1952), No. 4, p. 497. doi: 10.1063/1.1702234
|
[112] |
I.V. Ivanov, K.I. Emurlaev, K.E. Kuper, S.A. Akkuzin, and I.A. Bataev, Deconvolution-based peak profile analysis methods for characterization of CoCrFeMnNi high-entropy alloy, Heliyon, 8(2022), No. 9, art. No. e10541. doi: 10.1016/j.heliyon.2022.e10541
|
[113] |
C. Lee, F. Maresca, R. Feng, et al., Strength can be controlled by edge dislocations in refractory high-entropy alloys, Nat. Commun., 12(2021), No. 1, art. No. 5474. doi: 10.1038/s41467-021-25807-w
|
[114] |
Q.J. Li, H. Sheng, and E. Ma, Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways, Nat. Commun., 10(2019), No. 1, art. No. 3563. doi: 10.1038/s41467-019-11464-7
|
[115] |
B.L. Yin, S. Yoshida, N. Tsuji, and W.A. Curtin, Yield strength and misfit volumes of NiCoCr and implications for short-range-order, Nat. Commun., 11(2020), No. 1, art. No. 2507. doi: 10.1038/s41467-020-16083-1
|
[116] |
T.M. Smith, M.S. Hooshmand, B.D. Esser, et al., Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy, Acta Mater., 110(2016), p. 352. doi: 10.1016/j.actamat.2016.03.045
|
[117] |
Y.F. Zeng, X.R. Cai, and M. Koslowski, Effects of the stacking fault energy fluctuations on the strengthening of alloys, Acta Mater., 164(2019), p. 1. doi: 10.1016/j.actamat.2018.09.066
|
[118] |
P. Thirathipviwat, Y. Onuki, G. Song, J. Han, and S. Sato, Evaluation of dislocation activities and accumulation in cold swaged CoCrFeMnNi high entropy alloy, J. Alloys Compd., 890(2022), art. No. 161816. doi: 10.1016/j.jallcom.2021.161816
|
[119] |
W. Woo, E.W. Huang, J.W. Yeh, H. Choo, C. Lee, and S.Y. Tu, In-situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy, Intermetallics, 62(2015), p. 1. doi: 10.1016/j.intermet.2015.02.020
|
[120] |
M.Y. Luo, T.N. Lam, P.T. Wang, et al., Grain-size-dependent microstructure effects on cyclic deformation mechanisms in CoCrFeMnNi high-entropy-alloys, Scripta Mater., 210(2022), art. No. 114459. doi: 10.1016/j.scriptamat.2021.114459
|
[121] |
T.N. Lam, S.Y. Lee, N.T. Tsou, et al., Enhancement of fatigue resistance by overload-induced deformation twinning in a CoCrFeMnNi high-entropy alloy, Acta Mater., 201(2020), p. 412. doi: 10.1016/j.actamat.2020.10.016
|
[122] |
T.N. Lam, H.H. Chin, X. Zhang, et al., Tensile overload-induced texture effects on the fatigue resistance of a CoCrFeMnNi high-entropy alloy, Acta Mater., 245(2023), art. No. 118585. doi: 10.1016/j.actamat.2022.118585
|
[123] |
S.Y. Huang, D.W. Brown, B. Clausen, Z.K. Teng, Y.F. Gao, and P.K. Liaw, In situ neutron-diffraction studies on the creep behavior of a ferritic superalloy, Metall. Mater. Trans. A, 43(2012), No. 5, p. 1497. doi: 10.1007/s11661-011-0979-2
|
[124] |
G.M. Stoica, A.D. Stoica, M.K. Miller, and D. Ma, Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy, Nat. Commun., 5(2014), art. No. 5178. doi: 10.1038/ncomms6178
|
[125] |
D. Caillard, Kinetics of dislocations in pure Fe. Part I. In situ straining experiments at room temperature, Acta Mater., 58(2010), No. 9, p. 3493. doi: 10.1016/j.actamat.2010.02.023
|
[126] |
C. Lee, G. Kim, Y. Chou, et al., Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy, Sci. Adv., 6(2020), No. 37, art. No. eaaz4748. doi: 10.1126/sciadv.aaz4748
|
[127] |
J.S. Jeong, W. Woo, K.H. Oh, S.K. Kwon, and Y.M. Koo, In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels, Acta Mater., 60(2012), No. 5, p. 2290. doi: 10.1016/j.actamat.2011.12.043
|
[128] |
J.S. Jeong, Y.M. Koo, I.K. Jeong, S.K. Kim, and S.K. Kwon, Micro-structural study of high-Mn TWIP steels using diffraction profile analysis, Mater. Sci. Eng. A, 530(2011), p. 128. doi: 10.1016/j.msea.2011.09.060
|
[129] |
B.E. Warren, X-ray studies of deformed metals, Prog. Met. Phys., 8(1959), p. 147. doi: 10.1016/0502-8205(59)90015-2
|
[130] |
M.M.J. Treacy, J.M. Newsam, and M.W. Deem, A general recursion method for calculating diffracted intensities from crystals containing planar faults, Proc. R. Soc. Lond. Ser. A, 433(1991), No. 1889, p. 499. doi: 10.1098/rspa.1991.0062
|
[131] |
L. Balogh, G. Ribárik, and T. Ungár, Stacking faults and twin boundaries in fcc crystals determined by X-ray diffraction profile analysis, J. Appl. Phys., 100(2006), No. 2, art. No. 023512. doi: 10.1063/1.2216195
|
[132] |
D.R. Steinmetz, T. Jäpel, B. Wietbrock, et al., Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments, Acta Mater., 61(2013), No. 2, p. 494. doi: 10.1016/j.actamat.2012.09.064
|
[133] |
J.W. Yeh, Strength through high slip-plane density, Science, 374(2021), No. 6570, p. 940. doi: 10.1126/science.abm0120
|
[134] |
M. Frank, S.S. Nene, Y. Chen, et al., Direct evidence of the stacking fault-mediated strain hardening phenomenon, Appl. Phys. Lett., 119(2021), No. 8, art. No. 081906. doi: 10.1063/5.0062153
|
[135] |
C. Hu, C.P. Huang, Y.X. Liu, A. Perlade, K.Y. Zhu, and M.X. Huang, The dual role of TRIP effect on ductility and toughness of a medium Mn steel, Acta Mater., 245(2023), art. No. 118629. doi: 10.1016/j.actamat.2022.118629
|
[136] |
S. Chen, H.S. Oh, B. Gludovatz, et al., Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy, Nat. Commun., 11(2020), No. 1, art. No. 826. doi: 10.1038/s41467-020-14641-1
|
[137] |
N. Xu, S.L. Li, R.G. Li, et al. , In situ investigation of the deformation behaviors of Fe20Co30Cr25Ni25 and Fe20Co30Cr30Ni20 high entropy alloys by high-energy X-ray diffraction, Mater. Sci. Eng. A, 795(2020), art. No. 139936. doi: 10.1016/j.msea.2020.139936
|
[138] |
L. Wang, C. Fu, Y.D. Wu, R.G. Li, Y.D. Wang, and X.D. Hui, Ductile Ti-rich high-entropy alloy controlled by stress induced martensitic transformation and mechanical twinning, Mater. Sci. Eng. A, 763(2019), art. No. 138147. doi: 10.1016/j.msea.2019.138147
|
[139] |
Y.J. Shi, S.L. Li, T.L. Lee, et al., In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy, Mater. Sci. Eng. A, 771(2020), art. No. 138555. doi: 10.1016/j.msea.2019.138555
|
[140] |
L.L. Ma, L. Wang, Z.H. Nie, et al., Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron-based high-energy X-ray diffraction, Acta Mater., 128(2017), p. 12. doi: 10.1016/j.actamat.2017.02.014
|
[141] |
L. Wang, C. Fu, Y.D. Wu, R.G. Li, X.D. Hui, and Y.D. Wang, Superelastic effect in Ti-rich high entropy alloys via stress-induced martensitic transformation, Scripta Mater., 162(2019), p. 112. doi: 10.1016/j.scriptamat.2018.10.035
|
[142] |
J.J. Gao, P. Castany, and T. Gloriant, Synthesis and characterization of a new TiZrHfNbTaSn high-entropy alloy exhibiting superelastic behavior, Scripta Mater., 198(2021), art. No. 113824. doi: 10.1016/j.scriptamat.2021.113824
|
[143] |
S.L. Li, Y. Li, Y.K. Wang, et al., Multiscale residual stress evaluation of engineering materials/components based on neutron and synchrotron radiation technology, Acta Metall. Sin., 59(2023), No. 8, p. 1001.
|
[144] |
S.R. MacEwen, J. Faber Jr, and A.P.L. Turner, The use of time-of-flight neutron diffraction to study grain interaction stresses, Acta Metall., 31(1983), No. 5, p. 657. doi: 10.1016/0001-6160(83)90082-2
|
[145] |
M.L. Wang, Y.P. Lu, J.G. Lan, et al., Lightweight, ultrastrong and high thermal-stable eutectic high-entropy alloys for elevated-temperature applications, Acta Mater., 248(2023), art. No. 118806. doi: 10.1016/j.actamat.2023.118806
|
[146] |
Y.H. Jia, Z.J. Wang, Q.F. Wu, et al., Boron microalloying for high-temperature eutectic high-entropy alloys, Acta Mater., 262(2024), art. No. 119427. doi: 10.1016/j.actamat.2023.119427
|
[147] |
D. Yun, H. Chae, T. Lee, et al., Stress contribution of B2 phase in Al0.7CoCrFeNi eutectic high entropy alloy, J. Alloys Compd., 918(2022), art. No. 165673. doi: 10.1016/j.jallcom.2022.165673
|
[148] |
J. Ren, Y. Zhang, D. Zhao, et al., Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing, Nature, 608(2022), No. 7921, p. 62. doi: 10.1038/s41586-022-04914-8
|
[149] |
J.V. Gordon, R.E. Lim, M.J. Wilkin, D.C. Pagan, R.A. Lebensohn, and A.D. Rollett, Evaluating the grain-scale deformation behavior of a single-phase FCC high entropy alloy using synchrotron high energy diffraction microscopy, Acta Mater., 215(2021), art. No. 117120. doi: 10.1016/j.actamat.2021.117120
|
[150] |
M. Naeem, H.Y. He, F. Zhang, et al., Cooperative deformation in high-entropy alloys at ultralow temperatures, Sci. Adv., 6(2020), No. 13, art. No. eaax4002. doi: 10.1126/sciadv.aax4002
|