Cite this article as:

Shenghua Wu, Chong Yang, Peng Zhang, Hang Xue, Yihan Gao, Yuqing Wang, Ruihong Wang, Jinyu Zhang, Gang Liu, and Jun Sun, Review of Sc microalloying effects in Al–Cu alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp.1098-1114. https://dx.doi.org/10.1007/s12613-024-2841-8
Shenghua Wu, Chong Yang, Peng Zhang, Hang Xue, Yihan Gao, Yuqing Wang, Ruihong Wang, Jinyu Zhang, Gang Liu, and Jun Sun, Review of Sc microalloying effects in Al–Cu alloys, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp.1098-1114. https://dx.doi.org/10.1007/s12613-024-2841-8
引用本文 PDF XML SpringerLink

Al–Cu合金中Sc微合金化效应综述

摘要: 在铝(Aluminum,Al)合金中,人为调控固态相变析出是获得优异性能的有效方法。微合金化策略是目前广泛采用和有效调控固态相变析出的方法之一。本文详细总结了Sc微合金化效应对不同晶粒尺寸Al–Cu合金微观组织演变和力学性能的影响。在粗晶Al–Cu合金中,淬火空位、微合金化Sc原子、固溶Cu原子共同形成的Cu/Sc/空位复合体可以作为异质形核点促进θ′相析出,同时Sc原子偏聚在θ′/Al基体界面上可以降低界面能,进一步促进θ′相析出。细化晶粒尺寸至细晶/超细晶尺度,由于Sc的扩散速率显著小于Cu,具有较高结合能的Cu/Sc/空位复合体可以有效抑制Cu扩散至晶界形成的不利沿晶θ相,从而促进有利的晶内θ′相析出。在纳米晶尺度,由于大变形施加的高应变量可以产生高浓度空位,进而在Al基体中形成高数量密度、尺寸在1–2 nm的富(Cu、Sc、空位)原子复合体。这种原子–空位复合体由于空位含量较高,因此具有较高的结合能和热稳定性,同时可以有效阻碍位错运动,使得纳米晶Al–Cu–Sc合金具有优异的热稳定性和强韧化水平。本文推荐使用微合金化方法来改变Al合金的析出行为,从而获得更优异的力学性能和热稳定性。

 

Review of Sc microalloying effects in Al–Cu alloys

Abstract: Artificially controlling the solid-state precipitation in aluminum (Al) alloys is an efficient way to achieve well-performed properties, and the microalloying strategy is the most frequently adopted method for such a purpose. In this paper, recent advances in length-scale-dependent scandium (Sc) microalloying effects in Al–Cu model alloys are reviewed. In coarse-grained Al–Cu alloys, the Sc-aided Cu/Sc/vacancies complexes that act as heterogeneous nuclei and Sc segregation at the θ′-Al2Cu/matrix interface that reduces interfacial energy contribute significantly to θ′ precipitation. By grain size refinement to the fine/ultrafine-grained scale, the strongly bonded Cu/Sc/vacancies complexes inhibit Cu and vacancy diffusing toward grain boundaries, promoting the desired intragranular θ′ precipitation. At nanocrystalline scale, the applied high strain producing high-density vacancies results in the formation of a large quantity of (Cu, Sc, vacancy)-rich atomic complexes with high thermal stability, outstandingly improving the strength/ductility synergy and preventing the intractable low-temperature precipitation. This review recommends the use of microalloying technology to modify the precipitation behaviors toward better combined mechanical properties and thermal stability in Al alloys.

 

/

返回文章
返回