留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(8)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  177
  • HTML全文浏览量:  80
  • PDF下载量:  25
  • 被引次数: 0
Xiaorui Zhang, Min Zou, Song Lu, Longfei Li, Xiaoli Zhuang, and Qiang Feng, A novel high-Cr CoNi-based superalloy with superior high-temperature microstructural stability, oxidation resistance and mechanical properties, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2843-6
Cite this article as:
Xiaorui Zhang, Min Zou, Song Lu, Longfei Li, Xiaoli Zhuang, and Qiang Feng, A novel high-Cr CoNi-based superalloy with superior high-temperature microstructural stability, oxidation resistance and mechanical properties, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2843-6
引用本文 PDF XML SpringerLink
研究论文

一种具有优异高温组织稳定性,抗氧化性和力学性能的新型高Cr含量CoNi基高温合金


  • 通讯作者:

    李龙飞    E-mail: lilf@skl.ustb.edu.cn

    冯强    E-mail: qfeng@skl.ustb.edu.cn

文章亮点

  • (1) 研发了一种综合性能优异的新型高Cr含量CoNi基高温合金,其目标使用温度为9001000°C。
  • (2) 该合金在9001000°C长期时效过程中能够保持组织稳定,且γ′相粗化速率低。
  • (3) 该合金在1000°C高温氧化过程中表面形成连续的Al2O3层,抗氧化性能与CMSX-4相当。
  • (4) 其高温压缩屈服强度和蠕变性能优于部分Ni基和Co–Al–W基高温合金。
  • γ′相强化Co基高温合金由于具有与Ni基高温合金相当的高温力学性能,更高的合金熔点,更好的可加工性能,使这种新型合金具有成为新一代高温结构材料的潜力。为了平衡合金的综合性能和实现工程化应用,目前该合金体系已经逐步发展为多组元CoNi基高温合金。面向具有更高承温能力(>900°C)的燃机用抗腐蚀高温合金材料,本研究研发了一种具有优异高温组织稳定性,抗氧化性和力学性能的新型高Cr含量CoNi基高温合金。结果表明,该合金在9001000°C的长期时效过程中保持了较高γ′相体积分数、近立方状γ′相形貌和极低的γ′相粗化速率,且未析出TCP相,表现出优异的高温组织稳定性能。合金在1000°C空气环境下氧化100 h后的氧化增重为0.6 mg/cm2,在氧化过程中表面形成连续Al2O3层,其抗氧化性能优于镍基铸造高温合金MarM247,与CMSX-4合金相当。此外,该合金具有良好的高温力学性能,其多晶材料的高温压缩屈服强度显著高于MarM247合金,在950°C时的最小压缩蠕变速率与镍基铸造高温合金MarM247,IN100合金相当。在本研究中,高Cr含量CoNi基高温合金中Cr元素是γ′相粗化速率控制性元素。此外,高Cr含量有利于提高合金高温抗氧化和力学性能。本研究为工业燃气轮机用CoNi基铸造高温合金的成分设计提供了参考依据及理论支持。
  • Research Article

    A novel high-Cr CoNi-based superalloy with superior high-temperature microstructural stability, oxidation resistance and mechanical properties

    + Author Affiliations
    • A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared, and the evaluation of its high-temperature microstructural stability, oxidation resistance, and mechanical properties was conducted mainly using its cast polycrystalline alloy. The results disclosed that the morphology of the γ′ phase remained stable, and the coarsening rate was slow during the long-term aging at 900–1000°C. The activation energy for γ′ precipitate coarsening of alloy 9CoNi-Cr was (402 ± 51) kJ/mol, which is higher compared with those of CMSX-4 and some other Ni-based and Co-based superalloys. Importantly, there was no indication of the formation of topologically close-packed phases during this process. All these factors demonstrated the superior microstructural stability of the alloy. The mass gain of alloy 9CoNi-Cr was 0.6 mg/cm2 after oxidation at 1000°C for 100 h, and the oxidation resistance was comparable to advanced Ni-based superalloys CMSX-4, which can be attributed to the formation of a continuous Al2O3 protective layer. Moreover, the compressive yield strength of this cast polycrystalline alloy at high temperatures is clearly higher than that of the conventional Ni-based cast superalloy and the compressive minimum creep rate at 950°C is comparable to that of the conventional Ni-based cast superalloy, demonstrating the alloy’s good mechanical properties at high temperature. This is partially because high Cr is beneficial in improving the γ and γ′ phase strengths of alloy 9CoNi-Cr.
    • loading
    • [1]
      J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Cobalt-base high-temperature alloys, Science, 312(2006), No. 5770, p. 90. doi: 10.1126/science.1121738
      [2]
      A. Bauer, S. Neumeier, F. Pyczak, R.F. Singer, and M. Göken, Creep properties of different γ′-strengthened Co-base superalloys, Mater. Sci. Eng. A, 550(2012), p. 333. doi: 10.1016/j.msea.2012.04.083
      [3]
      K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Phase equilibria and microstructure on γ′ phase in Co–Ni–Al–W system, Mater. Trans., 49(2008), No. 6, p. 1474. doi: 10.2320/matertrans.MER2008073
      [4]
      C.H. Zenk, S. Neumeier, N.M. Engl, et.al, Intermediate Co/Ni-base model superalloys—Thermophysical properties, creep and oxidation, Scripta Mater., 112(2016), p. 83. doi: 10.1016/j.scriptamat.2015.09.018
      [5]
      S.K. Makineni, B. Nithin, and K. Chattopadhyay, Synthesis of a new tungsten-free γ–γ′ cobalt-based superalloy by tuning alloying additions, Acta Mater., 85(2015), p. 85. doi: 10.1016/j.actamat.2014.11.016
      [6]
      F. Xue, H.J. Zhou, and Q. Feng, Improved high-temperature microstructural stability and creep property of novel Co-base single-crystal alloys containing Ta and Ti, JOM, 66(2014), No. 12, p. 2486. doi: 10.1007/s11837-014-1181-y
      [7]
      D.S. Ng, D.W. Chung, J.P. Toinin, D.N. Seidman, D.C. Dunand, and E.A. Lass, Effect of Cr additions on a γ-γ′ microstructure and creep behavior of a Co-based superalloy with low W content, Mater. Sci. Eng. A, 778(2020), art. No. 139108. doi: 10.1016/j.msea.2020.139108
      [8]
      X.L. Zhuang, S. Antonov, L.F. Li, and Q. Feng, Effect of alloying elements on the coarsening rate of γʹ precipitates in multi-component CoNi-based superalloys with high Cr content, Scripta Mater., 202(2021), art. No. 114004. doi: 10.1016/j.scriptamat.2021.114004
      [9]
      S. Neumeier, L.P. Freund, and M. Göken, No. el wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance, Scripta Mater., 109(2015), p. 104. doi: 10.1016/j.scriptamat.2015.07.030
      [10]
      Y. Zhang, H.D. Fu, X.Z. Zhou, Y.H. Zhang, H.B. Dong, and J.X. Xie, Microstructure evolution of multicomponent γ′-strengthened Co-based superalloy at 750°C and 1000°C with different Al and Ti contents, Metall. Mater. Trans. A, 51(2020), No. 4, p. 1755. doi: 10.1007/s11661-020-05652-0
      [11]
      X.L. Zhuang, S. Lu, L.F. Li, and Q. Feng, Microstructures and properties of a novel γ′-strengthened multi-component CoNi-based wrought superalloy designed by CALPHAD method, Mater. Sci. Eng. A, 780(2020), art. No. 139219. doi: 10.1016/j.msea.2020.139219
      [12]
      M. Zou, W. Li, L. Li, J.C. Zhao, and Q. Feng, Machine learning assisted design approach for developing γ′-strengthened Co–Ni-base superalloys, [in] Proceedings of the 14th International Symposium on Superalloys, Pennsylvania, 2021, p. 937.
      [13]
      W.D. Li, L.F. Li, S. Antonov, F. Lu, and Q. Feng, Effects of Cr and Al/W ratio on the microstructural stability, oxidation property and γ′ phase nano-hardness of multi-component Co–Ni-base superalloys, J. Alloys Compd., 826(2020), art. No. 154182. doi: 10.1016/j.jallcom.2020.154182
      [14]
      S.A. Forsik, N. Zhou, and T. Wang, Recent developments in the design of next generation γ′-strengthened cobalt-nickel superalloys, [in] Proceedings of the 14th International Symposium on Superalloys, Pennsylvania, 2021, p. 847.
      [15]
      M. Knop, P. Mulvey, F. Ismail, et al., A new polycrystalline Co–Ni superalloy, JOM, 66(2014), No. 12, p. 2495. doi: 10.1007/s11837-014-1175-9
      [16]
      S. Neumeier, H.U. Rehman, J. Neuner, et al., Diffusion of solutes in fcc Cobalt investigated by diffusion couples and first principles kinetic Monte Carlo, Acta Mater., 106(2016), p. 304. doi: 10.1016/j.actamat.2016.01.028
      [17]
      L. Klein, Y. Shen, M.S. Killian, and S. Virtanen, Effect of B and Cr on the high temperature oxidation behaviour of novel γ/γ′-strengthened Co-base superalloys, Corros. Sci., 53(2011), No. 9, p. 2713. doi: 10.1016/j.corsci.2011.04.020
      [18]
      S.M. Das, M.P. Singh, and K. Chattopadhyay, Effect of Cr addition on the evolution of protective alumina scales and the oxidation properties of a Ta stabilized γ′-strengthened Co-Ni-Al-Mo-Ta-Ti alloy, Corros. Sci., 172(2020), art. No. 108683. doi: 10.1016/j.corsci.2020.108683
      [19]
      H.J. Zhou, W.D. Li, F. Xue, L. Zhang, X.H. Qu, and Q. Feng, Alloying effects on microstructural stability and γ′ phase Nano‐hardness in Co–Al–W–Ta–Ti‐base superalloys, [in] Proceedings of the 13th International Symposium on Superalloys, Pennsylvania, 2016, p. 981.
      [20]
      L.J. Li, L. Wang, Z.D. Liang, et al., Effects of Ni and Cr on the high-temperature oxidation behavior and mechanisms of Co- and CoNi-base superalloys, Mater. Des., 224(2022), art. No. 111291. doi: 10.1016/j.matdes.2022.111291
      [21]
      X.L. Zhuang, S. Antonov, W.D. Li, S. Lu, L.F. Li, and Q. Feng, Alloying effects and effective alloy design of high-Cr CoNi-based superalloys via a high-throughput experiments and machine learning framework, Acta Mater., 243(2023), art. No. 118525. doi: 10.1016/j.actamat.2022.118525
      [22]
      S. Lu, M. Zou, X.R. Zhang, et al., Data-driven “cross-component” design and optimization of γ′-strengthened Co-based superalloys, Adv. Eng. Mater., 25(2023), art. No. 2201257. doi: 10.1002/adem.202201257
      [23]
      I.M. Lifshitz and V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19(1961), No. 1-2, p. 35. doi: 10.1016/0022-3697(61)90054-3
      [24]
      C. Wanger, Theorie der Alterung von Niederschlagen durch Umlosen, Z. Elektrochem., 65(1961), p. 581.
      [25]
      A.M. Ges, O. Fornaro, and H.A. Palacio, Coarsening behaviour of a Ni-base superalloy under different heat treatment conditions, Mater. Sci. Eng. A, 458(2007), No. 1-2, p. 96. doi: 10.1016/j.msea.2006.12.107
      [26]
      J. Lapin, M. Gebura, T. Pelachová and M. Nazmy, Coarsening kinetics of cuboidal γ′ precipitates in single crystal nickel base superalloy CMSX-4, Kovove Mater., 46(2008), p. 313.
      [27]
      D.J. Sauza, D.C. Dun, and D.N. Seidman, Microstructural evolution and high-temperature strength of a γ(f.c.c.)/γ′(L12) Co–Al–W–Ti–B superalloy, Acta Mater., 174(2019), p. 427. doi: 10.1016/j.actamat.2019.05.058
      [28]
      P. Pandey, S. Kashyap, D. Palanisamy, A. Sharma, and K. Chattopadhyay, On the high temperature coarsening kinetics of γ′ precipitates in a high strength Co37.6Ni35.4Al9.9Mo4.9Cr5.9Ta2.8Ti3.5 fcc-based high entropy alloy, Acta Mater., 177(2019), p. 82. doi: 10.1016/j.actamat.2019.07.011
      [29]
      W.Z. Wang, T. Jin, J.L. Liu, X.F. Sun, H.R. Guan, and Z.Q. Hu, Role of Re and Co on microstructures and γ′ coarsening in single crystal superalloys, Mater. Sci. Eng. A, 479(2008), No. 1-2, p. 148. doi: 10.1016/j.msea.2007.06.031
      [30]
      J. Kundin, L. Mushongera, T. Goehler, and H. Emmerich, Phase-field modeling of the γ’-coarsening behavior in Ni-based superalloys, Acta Mater., 60(2012), No. 9, p. 3758. doi: 10.1016/j.actamat.2012.03.023
      [31]
      S. Meher, S. Nag, J. Tiley, A. Goel, and R. Banerjee, Coarsening kinetics of γ′ precipitates in cobalt-base alloys, Acta Mater., 61(2013), No. 11, p. 4266. doi: 10.1016/j.actamat.2013.03.052
      [32]
      F. Mastromatteo, F. Niccolai, M. Giannozzi, and U. Bardi, The coarsening kinetic of γ′ particles in nickel-based superalloys during aging at high temperatures, [in] Proceedings of the Turbo Expo : Power for Land, Sea, and Air, Barcelona, 2004, p. 851.
      [33]
      L. Klein, High Temperature Oxidation and Electrochemical Studies on No. el Co-Base Superalloys [Dissertation], Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen, 2013.
      [34]
      A.C. Yeh, S.C. Wang, C.F. Cheng, Y.J. Chang, and S.C. Chang, Oxidation behaviour of Si-bearing co-based alloys, Oxid. Met., 86(2016), No. 1, p. 99.
      [35]
      R. Baldan, R. Guimarães, C.A. Nunes, S.B. Gabriel, and G.C. Coelho, Oxidation behavior of the niobium-modified MAR-M247 superalloy at 1000°C in air, Oxid. Met., 83(2015), No. 1, p. 151.
      [36]
      M. Göbel, A. Rahmel, and M. Schütze, The isothermal-oxidation behavior of several nickel-base single-crystal superalloys with and without coatings, Oxid. Met., 39(1993), No. 3, p. 231.
      [37]
      J.H. Xiao, Y. Xiong, L. Wang, et.al, Oxidation behavior of high Hf nickel-based superalloy in air at 900, 1000 and 1100°C, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1957. doi: 10.1007/s12613-020-2204-z
      [38]
      A. Suzuki, High-temperature strength and deformation of γ/γ′ two-phase Co–Al–W-base alloys, Acta Mater., 56(2008), No. 6, p. 1288. doi: 10.1016/j.actamat.2007.11.014
      [39]
      J.R. Davis, Nickel , Cobalt , and Their Alloys, ASM International, Ohio, 2000.
      [40]
      C.T. Sims, N.S. Stoloff, and W.C. Hagel, Superalloys II, Wiley-Interscience, New York, 1987.
      [41]
      A. Bauer, S. Neumeier, F. Pyczak, and M. Göken, Creep strength and microstructure of polycrystalline γ′-strengthened cobalt-base superalloys, [in] Proceedings of the 12th International Symposium on Superalloys, Pennsylvania, 2012, p. 695.
      [42]
      M. Kvapilová, K. Kuchařová, K. Hrbáček, and V. Sklenička, Creep processes in MAR-M247 nickel-base superalloy, Solid State Phenom., 258(2016), p. 603. doi: 10.4028/www.scientific.net/SSP.258.603
      [43]
      W.D. Li, L.F. Li, S. Antonov, and Q. Feng, Effective design of a Co–Ni–Al–W–Ta–Ti alloy with high γ′ solvus temperature and microstructural stability using combined CALPHAD and experimental approaches, Mater. Des., 180(2019), art. No. 107912. doi: 10.1016/j.matdes.2019.107912
      [44]
      N. Xiao, X. Guan, D. Wang, H.L. Yan, M.H. Cai, N. Jia, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1667. doi: 10.1007/s12613-023-2641-6
      [45]
      K. Durst and M. Göken, Micromechanical characterisation of the influence of rhenium on the mechanical properties in nickel-base superalloys, Mater. Sci. Eng. A, 387-389(2004), p. 312. doi: 10.1016/j.msea.2004.03.079
      [46]
      L. Xu, C.G. Tian, C.Y. Cui, Y.F. Gu, and X.F. Sun, Morphology evolution of unstable γ′ in Ni–Co based superalloy, Mater. Sci. Technol., 30(2014), No. 8, p. 962. doi: 10.1179/1743284713Y.0000000381
      [47]
      X. Li, N. Saunders, and A.P. Miodownik, The coarsening kinetics of γ′ particles in nickel-based alloys, Metall. Mater. Trans. A, 33(2002), No. 11, p. 3367. doi: 10.1007/s11661-002-0325-9
      [48]
      J. Tiley, G.B. Viswanathan, R. Srinivasan, R. Banerjee, D.M. Dimiduk, and H.L. Fraser, Coarsening kinetics of γ′ precipitates in the commercial nickel base Superalloy René 88 DT, Acta Mater., 57(2009), No. 8, p. 2538. doi: 10.1016/j.actamat.2009.02.010
      [49]
      B.H. Kear, F.S. Pettit, D.E. Fornwalt, and L.P. Lemaire, On the transient oxidation of a Ni–15Cr–6Al alloy, Oxid. Met., 3(1971), No. 6, p. 557. doi: 10.1007/BF00605003
      [50]
      Z.Y. Zhu, Y.F. Cai, Y.J. Gong, G.P. Shen, Y.G. Tu, and G.F. Zhang, Isothermal oxidation behavior and mechanism of a nickel-based superalloy at 1000°C, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 776. doi: 10.1007/s12613-017-1461-y
      [51]
      Y.H. Zhang, Z.X. Li, Y.W. Gui, H.D. Fu, and J.X. Xie, Effect of Ti and Ta content on the oxidation resistance of Co–Ni-based superalloys, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 351. doi: 10.1007/s12613-023-2733-3
      [52]
      S. Antonov, M. Detrois, D. Isheim, et al., Comparison of thermodynamic database models and APT data for strength modeling in high Nb content γ–γ′ Ni-base superalloys, Mater. Des., 86(2015), p. 649. doi: 10.1016/j.matdes.2015.07.171

    Catalog


    • /

      返回文章
      返回