留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(4)

数据统计

分享

计量
  • 文章访问数:  209
  • HTML全文浏览量:  95
  • PDF下载量:  24
  • 被引次数: 0
Anran Zhang, Xinquan Zhou, Ranran Gu, and Zhiguo Xia, Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2844-5
Cite this article as:
Anran Zhang, Xinquan Zhou, Ranran Gu, and Zhiguo Xia, Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2844-5
引用本文 PDF XML SpringerLink
研究论文

Mn2+掺杂CsCdCl3钙钛矿纳米晶的能量传递与发光特性研究


  • 通讯作者:

    夏志国    E-mail: xiazg@scut.edu.cn

文章亮点

  • (1) 设计合成了Mn2+掺杂CsCdCl3纳米晶。
  • (2) 研究了Mn2+掺杂前后纳米晶的光致发光特性差异与成因机制。
  • (3) 揭示了CsCdCl3: Mn2+纳米晶呈现高效橙红光发射的关键原因是STEs到Mn2+的高效能量传递。
  • 卤化物钙钛矿纳米晶因其优异的发光性质而备受关注,其中Mn2+掺杂已被证明是调控纳米晶发光特性的有效手段。因此,深入理解Mn2+发光与纳米晶基质中自陷激子(Self-trapped exciton, STE)发射的相互作用机制受到广泛关注。本研究通过高温热注入法合成了Mn2+掺杂CsCdCl3纳米晶。CsCdCl3 基质纳米晶呈现源自缺陷态的位于441 nm处的蓝光发射。CsCdCl3独特的结构容易产生晶格扭曲,而Mn2+掺杂进一步促进了基质晶格畸变,有利于STEs的产生。浓度梯度实验揭示了STEs到Mn2+ d–d跃迁的能量传递是实现Mn2+在656 nm处高效橙红光发射的重要原因。
  • Research Article

    Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals

    + Author Affiliations
    • Mn2+ doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nanocrystals (NCs). However, it is still difficult to understand the interplay of Mn2+ luminescence and the matrix self-trapped exciton (STE) emission therein. In this study, Mn2+-doped CsCdCl3 NCs are prepared by hot injection, in which CsCdCl3 is selected because of its unique crystal structure suitable for STE emission. The blue emission at 441 nm of undoped CsCdCl3 NCs originates from the defect states in the NCs. Mn2+ doping promotes lattice distortion of CsCdCl3 and generates bright orange-red light emission at 656 nm. The energy transfer from the STEs of CsCdCl3 to the excited levels of the Mn2+ ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl3:Mn2+ NCs. This work highlights the crucial role of energy transfer from STEs to Mn2+ dopants in Mn2+-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.
    • loading
    • [1]
      W. B. Chen, W. Li, X. J. Zhang, et al., Carbon dots embedded in lead-free luminescent metal halides crystals towards single-component white emitters, Sci. China Mater., 65(2022), No. 10, p. 2802. doi: 10.1007/s40843-022-2009-y
      [2]
      W.J. Zhu, W.B. Ma, Y.R. Su, et al., Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators, Light Sci. Appl., 9(2020), art. No. 112. doi: 10.1038/s41377-020-00353-0
      [3]
      M.Z. Li and Z.G. Xia, Recent progress of zero-dimensional luminescent metal halides, Chem. Soc. Rev., 50(2021), No. 4, p. 2626. doi: 10.1039/D0CS00779J
      [4]
      Y.Y. Jing, Y. Liu, M.Z. Li, and Z.G. Xia, Photoluminescence of singlet/triplet self-trapped excitons in Sb3+-based metal halides, Adv. Opt. Mater., 9(2021), No. 8, art. No. 2002213. doi: 10.1002/adom.202002213
      [5]
      C.K. Deng, G.J. Zhou, D. Chen, J. Zhao, Y.G. Wang, and Q.L. Liu, Broadband photoluminescence in 2D organic–inorganic hybrid perovskites: (C7H18N2)PbBr4 and (C9H22N2)PbBr4, J. Phys. Chem. Lett., 11(2020), No. 8, p. 2934. doi: 10.1021/acs.jpclett.0c00578
      [6]
      M.D. Smith, B.L. Watson, R.H. Dauskardt, and H.I. Karunadasa, Broadband emission with a massive stokes shift from sulfonium Pb–Br hybrids, Chem. Mater., 29(2017), No. 17, p. 7083. doi: 10.1021/acs.chemmater.7b02594
      [7]
      V. Morad, S. Yakunin, B.M. Benin, et al., Hybrid 0D antimony halides as air-stable luminophores for high-spatial-resolution remote thermography, Adv. Mater., 33(2021), No. 9, art. No. 2007355. doi: 10.1002/adma.202007355
      [8]
      T. Jun, K. Sim, S. Iimura, et al., Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure, Adv. Mater., 30(2018), No. 43, art. No. 1804547. doi: 10.1002/adma.201804547
      [9]
      L.Y. Lian, M.Y. Zheng, W.Z. Zhang, et al., Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons, Adv. Sci., 7(2020), No. 11, art. No. 2000195. doi: 10.1002/advs.202000195
      [10]
      J.H. Han, T. Samanta, Y.M. Park, et al., Effect of self-trapped excitons in the optical properties of manganese-alloyed hexagonal-phased metal halide perovskite, Chem. Eng. J., 450(2022), art. No. 138325. doi: 10.1016/j.cej.2022.138325
      [11]
      W.Y. Jia, Q.L. Wei, S.F. Yao, et al., Magnetic coupling for highly efficient and tunable emission in CsCdX3:Mn perovskites, J. Lumin., 257(2023), art. No. 119657. doi: 10.1016/j.jlumin.2022.119657
      [12]
      Z. Tang, R.Z. Liu, J.S. Chen, et al., Highly efficient and ultralong afterglow emission with anti-thermal quenching from CsCdCl3:Mn perovskite single crystals, Angew. Chem. Int. Ed., 61(2022), No. 51, art. No. 2210975.
      [13]
      B.B. Su, G.J. Zhou, J.L. Huang, E.H. Song, A. Nag, and Z.G. Xia, Mn2+-doped metal halide perovskites: Structure, photoluminescence, and application, Laser Photonics Rev., 15(2021), No. 1, art. No. 2000334. doi: 10.1002/lpor.202000334
      [14]
      F. Locardi, M. Cirignano, D. Baranov, et al., Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals, J. Am. Chem. Soc., 140(2018), No. 40, p. 12989. doi: 10.1021/jacs.8b07983
      [15]
      S.D. Adhikari, A. Dutta, S.K. Dutta, and N. Pradhan, Layered perovskites L2(Pb1− xMn x)Cl4 to Mn-doped CsPbCl3 perovskite platelets, ACS Energy Lett., 3(2018), No. 6, p. 1247. doi: 10.1021/acsenergylett.8b00653
      [16]
      X. Yuan, S.H. Ji, M.C.D. Siena, et al., Photoluminescence temperature dependence, dynamics, and quantum efficiencies in Mn2+-doped CsPbCl3 perovskite nanocrystals with varied dopant concentration, Chem. Mater., 29(2017), No. 18, p. 8003. doi: 10.1021/acs.chemmater.7b03311
      [17]
      K.Y. Xu and A. Meijerink, Tuning exciton–Mn2+ energy transfer in mixed halide perovskite nanocrystals, Chem. Mater., 30(2018), No. 15, p. 5346. doi: 10.1021/acs.chemmater.8b02157
      [18]
      X.Q. Zhou, K. Han, Y.X. Wang, et al., Energy-trapping management in X-ray storage phosphors for flexible 3D imaging, Adv. Mater., 35(2023), No. 16, art. No. 2212022. doi: 10.1002/adma.202212022
      [19]
      A.R. Zhang, Y. Liu, G.C. Liu, and Z.G. Xia, Dopant and compositional modulation triggered broadband and tunable near-infrared emission in Cs2Ag1− xNa xInCl6:Cr3+ nanocrystals, Chem. Mater., 34(2022), No. 7, p. 3006. doi: 10.1021/acs.chemmater.1c03878
      [20]
      R. Demirbilek, A.Ç. Bozdoğan, M. Çalışkan, G. Asan, and G. Özen, Electronic energy levels of CsCdCl3, J. Lumin., 131(2011), No. 9, p. 1853. doi: 10.1016/j.jlumin.2011.05.003
      [21]
      Y. Zhang, L. Zhou, D. Li, et al., Realizing efficient emission in three-dimensional CsCdCl3 single crystals by introducing separated emitting centers, Inorg. Chem., 61(2022), No. 44, p. 17902. doi: 10.1021/acs.inorgchem.2c03277
      [22]
      M.Y. Leng, Y. Yang, Z.W. Chen, et al., Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission, Nano Lett., 18(2018), No. 9, p. 6076. doi: 10.1021/acs.nanolett.8b03090
      [23]
      Y.Y. Jing, Y. Liu, J. Zhao, and Z.G. Xia, Sb3+ doping-induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals, J. Phys. Chem. Lett., 10(2019), No. 23, p. 7439. doi: 10.1021/acs.jpclett.9b03035
      [24]
      Y. Liu, Y.Y. Jing, J. Zhao, Q.L. Liu, and Z.G. Xia, Design optimization of lead-free perovskite Cs2AgInCl6:Bi nanocrystals with 11.4% photoluminescence quantum yield, Chem. Mater., 31(2019), No. 9, p. 3333. doi: 10.1021/acs.chemmater.9b00410
      [25]
      Y.X. Huang, Y.X. Pan, S.T. Guo, C.D. Peng, H.Z. Lian, and J. Lin, Large spectral shift of Mn2+ emission due to the shrinkage of the crystalline host lattice of the hexagonal CsCdCl3 crystals and phase transition, Inorg. Chem., 61(2022), No. 21, p. 8356. doi: 10.1021/acs.inorgchem.2c00995
      [26]
      W. Zhang, J.J. Wei, Z.L. Gong, et al., Unveiling the excited-state dynamics of Mn2+ in 0D Cs4PbCl6 perovskite nanocrystals, Adv. Sci., 7(2020), No. 22, art. No. 2002210. doi: 10.1002/advs.202002210
      [27]
      P. Arunkumar, K.H. Gil, S. Won, et al., Colloidal organolead halide perovskite with a high Mn solubility limit: A step toward Pb-free luminescent quantum dots, J. Phys. Chem. Lett., 8(2017), No. 17, p. 4161. doi: 10.1021/acs.jpclett.7b01440
      [28]
      R. Yang, D. Yang, M. Wang, et al., High-efficiency and stable long-persistent luminescence from undoped cesium cadmium chlorine crystals induced by intrinsic point defects, Adv. Sci., 10(2023), No. 15, art. No. 2207331. doi: 10.1002/advs.202207331
      [29]
      S.S. He, Q.P. Qiang, T.C. Lang, et al., Highly stable orange-red long-persistent luminescent CsCdCl3:Mn2+ perovskite crystal, Angew. Chem. Int. Ed., 61(2022), No. 48, art. No. e202208937. doi: 10.1002/anie.202208937
      [30]
      S.G. Ge, H. Peng, Q.L. Wei, et al., Realizing color-tunable and time-dependent ultralong afterglow emission in antimony-doped CsCdCl3 metal halide for advanced anti-counterfeiting and information encryption, Adv. Opt. Mater., 11(2023), No. 14, art. No. 2300323. doi: 10.1002/adom.202300323
      [31]
      W.X. Dong, Y.C. Xu, P. Su, et al., Excitation wavelength-dependent long-afterglow Sb, Mn-doped CsCdCl3 perovskite for anti-counterfeiting applications, Ceram. Int., 50(2024), No. 4, p. 6374. doi: 10.1016/j.ceramint.2023.11.372

    Catalog


    • /

      返回文章
      返回