Cite this article as: |
Anran Zhang, Xinquan Zhou, Ranran Gu, and Zhiguo Xia, Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1456-1461. https://doi.org/10.1007/s12613-024-2844-5 |
夏志国 E-mail: xiazg@scut.edu.cn
[1] |
W.B. Chen, W. Li, X.J. Zhang, et al., Carbon dots embedded in lead-free luminescent metal halides crystals towards single-component white emitters, Sci. China Mater., 65(2022), No. 10, p. 2802. doi: 10.1007/s40843-022-2009-y
|
[2] |
W.J. Zhu, W.B. Ma, Y.R. Su, et al., Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators, Light Sci. Appl., 9(2020), art. No. 112. doi: 10.1038/s41377-020-00353-0
|
[3] |
M.Z. Li and Z.G. Xia, Recent progress of zero-dimensional luminescent metal halides, Chem. Soc. Rev., 50(2021), No. 4, p. 2626. doi: 10.1039/D0CS00779J
|
[4] |
Y.Y. Jing, Y. Liu, M.Z. Li, and Z.G. Xia, Photoluminescence of singlet/triplet self-trapped excitons in Sb3+-based metal halides, Adv. Opt. Mater., 9(2021), No. 8, art. No. 2002213. doi: 10.1002/adom.202002213
|
[5] |
C.K. Deng, G.J. Zhou, D. Chen, J. Zhao, Y.G. Wang, and Q.L. Liu, Broadband photoluminescence in 2D organic–inorganic hybrid perovskites: (C7H18N2)PbBr4 and (C9H22N2)PbBr4, J. Phys. Chem. Lett., 11(2020), No. 8, p. 2934. doi: 10.1021/acs.jpclett.0c00578
|
[6] |
M.D. Smith, B.L. Watson, R.H. Dauskardt, and H.I. Karunadasa, Broadband emission with a massive stokes shift from sulfonium Pb–Br hybrids, Chem. Mater., 29(2017), No. 17, p. 7083. doi: 10.1021/acs.chemmater.7b02594
|
[7] |
V. Morad, S. Yakunin, B.M. Benin, et al., Hybrid 0D antimony halides as air-stable luminophores for high-spatial-resolution remote thermography, Adv. Mater., 33(2021), No. 9, art. No. 2007355. doi: 10.1002/adma.202007355
|
[8] |
T. Jun, K. Sim, S. Iimura, et al., Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure, Adv. Mater., 30(2018), No. 43, art. No. 1804547. doi: 10.1002/adma.201804547
|
[9] |
L.Y. Lian, M.Y. Zheng, W.Z. Zhang, et al., Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons, Adv. Sci., 7(2020), No. 11, art. No. 2000195. doi: 10.1002/advs.202000195
|
[10] |
J.H. Han, T. Samanta, Y.M. Park, et al., Effect of self-trapped excitons in the optical properties of manganese-alloyed hexagonal-phased metal halide perovskite, Chem. Eng. J., 450(2022), art. No. 138325. doi: 10.1016/j.cej.2022.138325
|
[11] |
W.Y. Jia, Q.L. Wei, S.F. Yao, et al., Magnetic coupling for highly efficient and tunable emission in CsCdX3:Mn perovskites, J. Lumin., 257(2023), art. No. 119657. doi: 10.1016/j.jlumin.2022.119657
|
[12] |
Z. Tang, R.Z. Liu, J.S. Chen, et al., Highly efficient and ultralong afterglow emission with anti-thermal quenching from CsCdCl3:Mn perovskite single crystals, Angew. Chem. Int. Ed., 61(2022), No. 51, art. No. e202210975. doi: 10.1002/anie.202210975
|
[13] |
B.B. Su, G.J. Zhou, J.L. Huang, E.H. Song, A. Nag, and Z.G. Xia, Mn2+-doped metal halide perovskites: Structure, photoluminescence, and application, Laser Photonics Rev., 15(2021), No. 1, art. No. 2000334. doi: 10.1002/lpor.202000334
|
[14] |
F. Locardi, M. Cirignano, D. Baranov, et al., Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals, J. Am. Chem. Soc., 140(2018), No. 40, p. 12989. doi: 10.1021/jacs.8b07983
|
[15] |
S.D. Adhikari, A. Dutta, S.K. Dutta, and N. Pradhan, Layered perovskites L2(Pb1− xMn x)Cl4 to Mn-doped CsPbCl3 perovskite platelets, ACS Energy Lett., 3(2018), No. 6, p. 1247. doi: 10.1021/acsenergylett.8b00653
|
[16] |
X. Yuan, S.H. Ji, M.C.D. Siena, et al., Photoluminescence temperature dependence, dynamics, and quantum efficiencies in Mn2+-doped CsPbCl3 perovskite nanocrystals with varied dopant concentration, Chem. Mater., 29(2017), No. 18, p. 8003. doi: 10.1021/acs.chemmater.7b03311
|
[17] |
K.Y. Xu and A. Meijerink, Tuning exciton–Mn2+ energy transfer in mixed halide perovskite nanocrystals, Chem. Mater., 30(2018), No. 15, p. 5346. doi: 10.1021/acs.chemmater.8b02157
|
[18] |
X.Q. Zhou, K. Han, Y.X. Wang, et al., Energy-trapping management in X-ray storage phosphors for flexible 3D imaging, Adv. Mater., 35(2023), No. 16, art. No. 2212022. doi: 10.1002/adma.202212022
|
[19] |
A.R. Zhang, Y. Liu, G.C. Liu, and Z.G. Xia, Dopant and compositional modulation triggered broadband and tunable near-infrared emission in Cs2Ag1− xNa xInCl6:Cr3+ nanocrystals, Chem. Mater., 34(2022), No. 7, p. 3006. doi: 10.1021/acs.chemmater.1c03878
|
[20] |
R. Demirbilek, A.Ç. Bozdoğan, M. Çalışkan, G. Asan, and G. Özen, Electronic energy levels of CsCdCl3, J. Lumin., 131(2011), No. 9, p. 1853. doi: 10.1016/j.jlumin.2011.05.003
|
[21] |
Y. Zhang, L. Zhou, D. Li, et al., Realizing efficient emission in three-dimensional CsCdCl3 single crystals by introducing separated emitting centers, Inorg. Chem., 61(2022), No. 44, p. 17902. doi: 10.1021/acs.inorgchem.2c03277
|
[22] |
M.Y. Leng, Y. Yang, Z.W. Chen, et al., Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission, Nano Lett., 18(2018), No. 9, p. 6076. doi: 10.1021/acs.nanolett.8b03090
|
[23] |
Y.Y. Jing, Y. Liu, J. Zhao, and Z.G. Xia, Sb3+ doping-induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals, J. Phys. Chem. Lett., 10(2019), No. 23, p. 7439. doi: 10.1021/acs.jpclett.9b03035
|
[24] |
Y. Liu, Y.Y. Jing, J. Zhao, Q.L. Liu, and Z.G. Xia, Design optimization of lead-free perovskite Cs2AgInCl6:Bi nanocrystals with 11.4% photoluminescence quantum yield, Chem. Mater., 31(2019), No. 9, p. 3333. doi: 10.1021/acs.chemmater.9b00410
|
[25] |
Y.X. Huang, Y.X. Pan, S.T. Guo, C.D. Peng, H.Z. Lian, and J. Lin, Large spectral shift of Mn2+ emission due to the shrinkage of the crystalline host lattice of the hexagonal CsCdCl3 crystals and phase transition, Inorg. Chem., 61(2022), No. 21, p. 8356. doi: 10.1021/acs.inorgchem.2c00995
|
[26] |
W. Zhang, J.J. Wei, Z.L. Gong, et al., Unveiling the excited-state dynamics of Mn2+ in 0D Cs4PbCl6 perovskite nanocrystals, Adv. Sci., 7(2020), No. 22, art. No. 2002210. doi: 10.1002/advs.202002210
|
[27] |
P. Arunkumar, K.H. Gil, S. Won, et al., Colloidal organolead halide perovskite with a high Mn solubility limit: A step toward Pb-free luminescent quantum dots, J. Phys. Chem. Lett., 8(2017), No. 17, p. 4161. doi: 10.1021/acs.jpclett.7b01440
|
[28] |
R. Yang, D. Yang, M. Wang, et al., High-efficiency and stable long-persistent luminescence from undoped cesium cadmium chlorine crystals induced by intrinsic point defects, Adv. Sci., 10(2023), No. 15, art. No. 2207331. doi: 10.1002/advs.202207331
|
[29] |
S.S. He, Q.P. Qiang, T.C. Lang, et al., Highly stable orange-red long-persistent luminescent CsCdCl3:Mn2+ perovskite crystal, Angew. Chem. Int. Ed., 61(2022), No. 48, art. No. e202208937. doi: 10.1002/anie.202208937
|
[30] |
S.G. Ge, H. Peng, Q.L. Wei, et al., Realizing color-tunable and time-dependent ultralong afterglow emission in antimony-doped CsCdCl3 metal halide for advanced anti-counterfeiting and information encryption, Adv. Opt. Mater., 11(2023), No. 14, art. No. 2300323. doi: 10.1002/adom.202300323
|
[31] |
W.X. Dong, Y.C. Xu, P. Su, et al., Excitation wavelength-dependent long-afterglow Sb, Mn-doped CsCdCl3 perovskite for anti-counterfeiting applications, Ceram. Int., 50(2024), No. 4, p. 6374. doi: 10.1016/j.ceramint.2023.11.372
|