留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 11
Nov.  2024

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1423
  • HTML全文浏览量:  165
  • PDF下载量:  31
  • 被引次数: 0
Yujia Shen, Jijie Wang, Beibei Wang, Peng Xue, Fengchao Liu, Dingrui Ni, Bolv Xiao,  and Zongyi Ma, Strengthening strategy for high-performance friction stir lap welded joints based on 5083 Al alloy, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2498-2507. https://doi.org/10.1007/s12613-024-2847-2
Cite this article as:
Yujia Shen, Jijie Wang, Beibei Wang, Peng Xue, Fengchao Liu, Dingrui Ni, Bolv Xiao,  and Zongyi Ma, Strengthening strategy for high-performance friction stir lap welded joints based on 5083 Al alloy, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2498-2507. https://doi.org/10.1007/s12613-024-2847-2
引用本文 PDF XML SpringerLink
研究论文

5083铝合金搅拌摩擦搭接接头强化策略


  • 通讯作者:

    王贝贝    E-mail: bbwang@imr.ac.cn

    薛鹏    E-mail: pxue@imr.ac.cn

文章亮点

  • (1) 开发一种水下两道次搅拌摩擦搭接焊工艺,消除搭接Hook缺陷,细化搭接区组织
  • (2) 该工艺显著增加搭接面积,接头力学性能与7xxx铝合金搭接接头相当
  • (3) 本研究提出一种预测搭接接头断裂模式的断裂判据
  • 在飞机、船舶和汽车制造过程中,铝合金蒙皮、壁板和加强筋之间经常采用搭接形式连接。这种铝合金搭接结构在熔焊过程中,易出现孔隙缺陷和元素烧损,导致接头强度系数下降。搅拌摩擦焊作为一种固相焊接方法,因其高质量、高效率以及节能环保等特点受到广泛关注,并已成功应用于汽车、轨道交通、航空航天等领域。然而,在搅拌摩擦搭接焊(FSLW)过程中,搭接特有的冷焊和钩状(Hook)缺陷会严重影响接头的力学性能。本研究重点探讨了转速、两道次焊接以及冷却方式对搭接缺陷形成、微观组织演变及力学性能的影响。研究发现通过降低焊接转速、采用小尺寸焊接工具并结合强制水冷技术进行两道次FSLW,可以有效消除搭接缺陷,显著增加有效搭接厚度和宽度。该工艺成功将Hook附近组织细化至超细晶尺度,使接头薄弱区组织得到强化,拉伸剪切力从298 N/mm提高到551 N/mm,其强度可媲美7xxx系列铝合金的搭接焊接头性能。此外,本文系统研究了FSLW接头的断裂行为,并提出了一种预测搭接接头断裂模式的断裂判据。本研究为消除搭接缺陷并提高接头性能提供了一种有效并值得借鉴的焊接方法。
  • Research Article

    Strengthening strategy for high-performance friction stir lap welded joints based on 5083 Al alloy

    + Author Affiliations
    • During aircraft, ship, and automobile manufacturing, lap structures are frequently produced among Al alloy skins, wall panels, and stiffeners. The occurrence of welding defects severely decreases mechanical properties during friction stir lap welding (FSLW). This study focuses on investigating the effects of rotation rate, multipass welding, and cooling methods on lap defect formation, microstructural evolution, and mechanical properties. Hook defects were eliminated by decreasing welding speed, applying two-pass FLSW with a small welding tool, and introducing additional water cooling, thus leading to a remarkable increase in effective sheet thickness and lap width. This above strategy yielded defect-free joints with an ultrafine-grained microstructure and increased tensile shear force from 298 to 551 N/mm. The fracture behavior of FSLW joints was systematically studied, and a fracture factor of lap joints was proposed to predict their fracture mode. By reducing the rotation rate, using two-pass welding, and employing additional water cooling strategies, an enlarged, strengthened, and defect-free lap zone with refined ultrafine grains was achieved with a quality comparable to that of lap welds based on 7xxx Al alloys. Importantly, this study provides a valuable FSLW method for eliminating hook defects and improving joint performance.
    • loading
    • [1]
      F. Czerwinski, Current trends in automotive lightweighting strategies and materials, Materials, 14(2021), No. 21, art. No. 6631. doi: 10.3390/ma14216631
      [2]
      K.J. Kim, Light-weight design and fatigue characteristics of automotive knuckle by using finite element analysis, J. Mech. Sci. Technol., 35(2021), No. 7, p. 2989. doi: 10.1007/s12206-021-0622-0
      [3]
      P.V. Rajesh, K.K. Gupta, R. Čep, M. Ramachandran, K. Kouřil, and K. Kalita, Optimizing friction stir welding of dissimilar grades of aluminum alloy using WASPAS, Materials, 15(2022), No. 5, art. No. 1715. doi: 10.3390/ma15051715
      [4]
      C.X. Zhu, J. Cheon, X.H. Tang, S.J. Na, and H.C. Cui, Molten pool behaviors and their influences on welding defects in narrow gap GMAW of 5083 Al-alloy, Int. J. Heat Mass Transf., 126(2018), p. 1206.
      [5]
      Y.W. Li, W.F. Zou, B. Lee, A. Babkin, and Y.L. Chang, Research progress of aluminum alloy welding technology, Int. J. Adv. Manuf. Technol., 109(2020), No. 5, p. 1207.
      [6]
      Z.W. Wang, M. Zhang, C. Li, et al., Achieving a high-strength dissimilar joint of T91 heat-resistant steel to 316L stainless steel via friction stir welding, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 166. doi: 10.1007/s12613-022-2508-2
      [7]
      A. Higgins, Adhesive bonding of aircraft structures, Int. J. Adhes. Adhes., 20(2000), No. 5, p. 367. doi: 10.1016/S0143-7496(00)00006-3
      [8]
      L.M. Ke, Sucking-extruding theory for the material flow in friction stir welds, J. Mech. Eng., 45(2009), No. 4, art. No. 89. doi: 10.3901/JME.2009.04.089
      [9]
      E. Salari, M. Jahazi, A. Khodabandeh, and H. Ghasemi-Nanesa, Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets, Mater. Des., 58(2014), p. 381. doi: 10.1016/j.matdes.2014.02.005
      [10]
      C.S. He, T. Wang, Z.Q. Zhang, and C.P. Qiu, Coupling effect of axial ultrasonic vibration and tool thread on the microstructure and properties of the friction stir lap welding joint of Al/Mg dissimilar alloys, J. Manuf. Process., 80(2022), p. 95. doi: 10.1016/j.jmapro.2022.05.008
      [11]
      T. Wang, X. Gong, S.D. Ji, G. Xue, and Z. Lv, Friction stir lap welding thin aluminum alloy sheets, High Temp. Mater. Process., 39(2020), No. 1, p. 663. doi: 10.1515/htmp-2020-0024
      [12]
      Y.M. Yue, Z. Zhang, S.D. Ji, Z.W. Li, and D.J. Yan, Friction stir lap welding of 6061-T6 Al to Ti–6Al–4V using low rotating speed, Int. J. Adv. Manuf. Technol., 96(2018), No. 5, p. 2285.
      [13]
      S. Pradeep, V.K.S. Jain, S. Muthukumaran, and R. Kumar, Microstructure and texture evolution during multi-pass friction stir processed AA5083, Mater. Lett., 288(2021), art. No. 129382. doi: 10.1016/j.matlet.2021.129382
      [14]
      A. Heidarzadeh, A. Chabok, and Y.T. Pei, Friction stir welding of Monel alloy at different heat input conditions: Microstructural mechanisms and tensile behavior, Mater. Lett., 245(2019), p. 94. doi: 10.1016/j.matlet.2019.02.108
      [15]
      S.W. Park, T.J. Yoon, and C.Y. Kang, Effects of the shoulder diameter and weld pitch on the tensile shear load in friction-stir welding of AA6111/AA5023 aluminum alloys, J. Mater. Process. Technol., 241(2017), p. 112. doi: 10.1016/j.jmatprotec.2016.11.007
      [16]
      D. Yi, T. Onuma, S. Mironov, Y.S. Sato, and H. Kokawa, Evaluation of heat input during friction stir welding of aluminium alloys, Sci. Technol. Weld. Join., 22(2017), No. 1, p. 41. doi: 10.1080/13621718.2016.1183079
      [17]
      M.M.Z. Ahmed, S. Ataya, M.M. El-Sayed Seleman, A.M.A. Mahdy, N.A. Alsaleh, and E. Ahmed, Heat input and mechanical properties investigation of friction stir welded AA5083/AA5754 and AA5083/AA7020, Metals, 11(2020), No. 1, art. No. 68. doi: 10.3390/met11010068
      [18]
      B. Snyder and A.M. Strauss, In-process cooling of friction stir extruded joints for increased weld performance via compressed air, water, granulated dry ice, and liquid nitrogen, J. Manuf. Process., 68(2021), p. 1004. doi: 10.1016/j.jmapro.2021.06.021
      [19]
      R.K.R. Singh, R. Prasad, S. Pandey, and S.K. Sharma, Effect of cooling environment and welding speed on fatigue properties of friction stir welded Al–Mg–Cr alloy, Int. J. Fatigue, 127(2019), p. 551. doi: 10.1016/j.ijfatigue.2019.06.043
      [20]
      K.K. Kumar, A. Kumar, M.V.N.V. Satyanarayana, and K. Nagu, Microstructure and strain hardening behaviour at the inter-mixing zone of water-cooled friction stir welded dissimilar aluminum alloys, Mater. Lett., 326(2022), art. No. 132991. doi: 10.1016/j.matlet.2022.132991
      [21]
      H.A. Derazkola and F. Khodabakhshi, Underwater submerged dissimilar friction-stir welding of AA5083 aluminum alloy and A441 AISI steel, Int. J. Adv. Manuf. Technol., 102(2019), No. 9, p. 4383.
      [22]
      J.Q. Zhang, Y.F. Shen, X. Yao, H.S. Xu, and B. Li, Investigation on dissimilar underwater friction stir lap welding of 6061-T6 aluminum alloy to pure copper, Mater. Des., 64(2014), p. 74. doi: 10.1016/j.matdes.2014.07.036
      [23]
      E.E. Kishta and B. Darras, Experimental investigation of underwater friction-stir welding of 5083 marine-grade aluminum alloy, Proc. Inst. Mech. Eng. Part B, 230(2016), No. 3, p. 458. doi: 10.1177/0954405414555560
      [24]
      B.B. Wang, F.F. Chen, F. Liu, W.G. Wang, P. Xue, and Z.Y. Ma, Enhanced mechanical properties of friction stir welded 5083Al-H19 joints with additional water cooling, J. Mater. Sci. Technol., 33(2017), No. 9, p. 1009. doi: 10.1016/j.jmst.2017.01.016
      [25]
      D. Wu, W.Y. Li, Y.J. Gao, et al., Impact of travel speed on the microstructure and mechanical properties of adjustable-gap bobbin-tool friction stir welded Al–Mg joints, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 710. doi: 10.1007/s12613-020-2134-9
      [26]
      M.A. García-Bernal, R.S. Mishra, D. Hernández-Silva, and V.M. Sauce-Rangel, Microstructural homogeneity and hot deformation of various friction-stir-processed 5083 Al alloys, J. Mater. Eng. Perform., 26(2017), No. 1, p. 460. doi: 10.1007/s11665-016-2455-z
      [27]
      H. Jamshidi Aval, S. Serajzadeh, A.H. Kokabi, and A. Loureiro, Effect of tool geometry on mechanical and microstructural behaviours in dissimilar friction stir welding of AA 5086–AA 6061, Sci. Technol. Weld. Join., 16(2011), No. 7, p. 597. doi: 10.1179/1362171811Y.0000000044
      [28]
      Y.S. Sato, M. Urata, H. Kokawa, and K. Ikeda, Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys, Mater. Sci. Eng. A, 354(2003), No. 1-2, p. 298. doi: 10.1016/S0921-5093(03)00008-X
      [29]
      B.M. Darras, M.K. Khraisheh, F.K. Abu-Farha, and M.A. Omar, Friction stir processing of commercial AZ31 magnesium alloy, J. Mater. Process. Technol., 191(2007), No. 1-3, p. 77. doi: 10.1016/j.jmatprotec.2007.03.045
      [30]
      X.H. Zeng, P. Xue, D. Wang, D.R. Ni, B.L. Xiao, and Z.Y. Ma, Realising equal strength welding to parent metal in precipitation-hardened Al–Mg–Si alloy via low heat input friction stir welding, Sci. Technol. Weld. Joining, 23(2018), No. 6, p. 478. doi: 10.1080/13621718.2017.1415249
      [31]
      G.M.D. Cantin, S.A. David, W.M. Thomas, E. Lara-Curzio, and S.S. Babu, Friction skew-stir welding of lap joints in 5083–0 aluminium, Sci. Technol. Weld. Joining, 10(2005), No. 3, p. 268. doi: 10.1179/174329305X39301
      [32]
      Z.W. Xu, Z.W. Li, S.D. Ji, and L.G. Zhang, Refill friction stir spot welding of 5083-O aluminum alloy, J. Mater. Sci. Technol., 34(2018), No. 5, p. 878. doi: 10.1016/j.jmst.2017.02.011
      [33]
      J.W. Kwon, M.S. Kang, S.O. Yoon, et al., Influence of tool plunge depth and welding distance on friction stir lap welding of AA5454-O aluminum alloy plates with different thicknesses, Trans. Nonferrous Met. Soc. China, 22(2012), p. s624. doi: 10.1016/S1003-6326(12)61775-0
      [34]
      X. Xiao, Y. Mao, X.C. Wang, D.Q. Qin, and L. Fu, Effects of curvature direction on friction stir welding lap joint of aluminum alloy “S” curved surface, Int. J. Adv. Manuf. Technol., 125(2023), No. 9, p. 4693.
      [35]
      H.J. Liu, Y.Y. Hu, Y.X. Peng, C. Dou, and Z.G. Wang, The effect of interface defect on mechanical properties and its formation mechanism in friction stir lap welded joints of aluminum alloys, J. Mater. Process. Technol., 238(2016), p. 244. doi: 10.1016/j.jmatprotec.2016.06.029
      [36]
      Z.W. Chen and S. Yazdanian, Friction stir lap welding of light alloys, Int. J. Soc. Mater. Eng. Resour., 20(2014), No. 2, p. 186. doi: 10.5188/ijsmer.20.186
      [37]
      M.A. Tashkandi, Lap joints of 6061 Al alloys by friction stir welding, IOP Conf. Ser.: Mater. Sci. Eng., 205(2017), art. No. 012005. doi: 10.1088/1757-899X/205/1/012005
      [38]
      Y. Chen, H.Y. Li, X.Y. Wang, H. Ding, and F.H. Zhang, A comparative investigation on conventional and stationary shoulder friction stir welding of Al-7075 butt-lap structure, Metals, 9(2019), No. 12, art. No. 1264. doi: 10.3390/met9121264
      [39]
      R.Z. Xu, S.L. Cui, H. Li, Y.X. Hou, and Z.C. Wei, Improving hook characterization of friction stir lap welded Al alloy joint using a two-section stepped friction pin, Int. J. Adv. Manuf. Technol., 102(2019), No. 9, p. 3739.
      [40]
      R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R Rep., 50(2005), No. 1-2, p. 1. doi: 10.1016/j.mser.2005.07.001
      [41]
      Ø. Frigaard, Ø. Grong, and O.T. Midling, A process model for friction stir welding of age hardening aluminum alloys, Metall. Mater. Trans. A, 32(2001), No. 5, p. 1189. doi: 10.1007/s11661-001-0128-4
      [42]
      Z.W. Li, Y.M. Yue, S.D. Ji, P. Chai, and Z.L. Zhou, Joint features and mechanical properties of friction stir lap welded alclad 2024 aluminum alloy assisted by external stationary shoulder, Mater. Des., 90(2016), p. 238. doi: 10.1016/j.matdes.2015.10.056
      [43]
      Z.L. Zhou, Y.M. Yue, S.D. Ji, Z.W. Li, and L.G. Zhang, Effect of rotating speed on joint morphology and lap shear properties of stationary shoulder friction stir lap welded 6061-T6 aluminum alloy, Int. J. Adv. Manuf. Technol., 88(2017), No. 5, p. 2135.
      [44]
      M. Tiryakioğlu, J.S. Robinson, M.A. Salazar-Guapuriche, Y.Y. Zhao, and P.D. Eason, Hardness–strength relationships in the aluminum alloy 7010, Mater. Sci. Eng. A, 631(2015), p. 196. doi: 10.1016/j.msea.2015.02.049

    Catalog


    • /

      返回文章
      返回