Cite this article as:

Fengbo Sun, Rui Zhang, Fanchao Meng, Shuai Wang, Lujun Huang, and Lin Geng, Interconnected microstructure and flexural behavior of Ti2C–Ti composites with superior Young’s modulus, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp.2088-2101. https://dx.doi.org/10.1007/s12613-024-2848-1
Fengbo Sun, Rui Zhang, Fanchao Meng, Shuai Wang, Lujun Huang, and Lin Geng, Interconnected microstructure and flexural behavior of Ti2C–Ti composites with superior Young’s modulus, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp.2088-2101. https://dx.doi.org/10.1007/s12613-024-2848-1
引用本文 PDF XML SpringerLink

超高杨氏模量Ti2C–Ti复合材料的互联通组织和弯曲行为

摘要: 钛基复合材料因其优异的比强度和高温性能在航空航天领域有广泛的应用前景,然而,现有钛基复合材料陶瓷相含量普遍较低,杨氏模量不足。为了大幅提高钛基复合材料的杨氏模量和强度,本文基于Hashin-Shtrikman理论设计了具有互连通微观结构的钛基复合材料。结果表明,当Ti2C含量达到50vol%时,原位反应产生了由Ti2C颗粒组成的互连通微观结构。在制备的复合材料中,颗粒内Ti层片呈双尺度分布,宽度分别为10 和230 nm。反应烧结过程中Ti2C颗粒内未反应Ti长大形成大尺寸Ti片层,降温过程中过饱和Ti2C内Ti原子直接析出形成小尺寸Ti片层。具有互连通微观结构的复合材料具有优异的性能,杨氏模量达174.3 GPa和抗弯强度达1014 GPa。与纯钛相比,复合材料的杨氏模量提高了55%,这归因于高Ti2C含量和互连通微观结构。高强度来自于强界面结合、互连Ti2C颗粒的载荷传递作用以及双尺度颗粒内Ti层片,其极大地降低了平均裂纹驱动力。原位加载弯曲试验表明,裂纹先在最大拉应力区域的Ti2C001解理面和Ti2C晶界处萌生。此外,颗粒间Ti晶粒能有效抑制裂纹扩展,从而防止复合材料发生脆性断裂。

 

Interconnected microstructure and flexural behavior of Ti2C–Ti composites with superior Young’s modulus

Abstract: To enhance the Young’s modulus (E) and strength of titanium alloys, we designed titanium matrix composites with interconnected microstructure based on the Hashin–Shtrikman theory. According to the results, the in-situ reaction yielded an interconnected microstructure composed of Ti2C particles when the Ti2C content reached 50vol%. With widths of 10 and 230 nm, the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti2C particles. The composites with interconnected microstructure attained superior properties, including E of 174.3 GPa and ultimate flexural strength of 1014 GPa. Compared with that of pure Ti, the E of the composite was increased by 55% due to the high Ti2C content and interconnected microstructure. The outstanding strength resulted from the strong interfacial bonding, load-bearing capacity of interconnected Ti2C particles, and bimodal intraparticle Ti lamellae, which minimized the average crack driving force. Interrupted flexural tests revealed preferential crack initiation along the 001 cleavage plane and grain boundary of Ti2C in the region with the highest tensile stress. In addition, the propagation can be efficiently inhibited by interparticle Ti grains, which prevented the brittle fracture of the composites.

 

/

返回文章
返回