留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 32 Issue 1
Jan.  2025

图(11)

数据统计

分享

计量
  • 文章访问数:  267
  • HTML全文浏览量:  107
  • PDF下载量:  22
  • 被引次数: 0
Yuanchun Zhang, Shengtao Gao, Xingzhao Zhang, Dacheng Ma, Chuanlei Zhu, and Jun He, Structural and microwave absorption properties of CoFe2O4/residual carbon composites, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 221-232. https://doi.org/10.1007/s12613-024-2849-0
Cite this article as:
Yuanchun Zhang, Shengtao Gao, Xingzhao Zhang, Dacheng Ma, Chuanlei Zhu, and Jun He, Structural and microwave absorption properties of CoFe2O4/residual carbon composites, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 221-232. https://doi.org/10.1007/s12613-024-2849-0
引用本文 PDF XML SpringerLink
研究论文

CoFe2O4/残碳复合材料的结构和微波吸收性能


  • 通讯作者:

    高圣涛    E-mail: shtgao@aust.edu.cn

文章亮点

  • (1) 通过水热法合成了CoFe2O4/煤气化细渣残碳复合材料
  • (2) CoFe2O4/煤气化细渣残碳复合材料表现出优异的雷达隐身性能
  • (3) 该复合材料优异的电磁波吸收性能源于其磁损耗和介电损耗的协同效应
  • 电磁干扰是当今社会迫切需要解决的问题,这就需要迅速发展具有优异电磁波吸收能力的吸波剂。本文以酸洗后的煤气化细渣为碳源,采用直接水热法制备了CoFe2O4/煤气化细渣残碳复合材料。研究了该复合材料的微观结构和电磁波吸收性能。通过CoFe2O4粒子改性煤气化细渣残碳,一方面可以利用CoFe2O4的磁性能提高煤气化细渣残碳基磁性吸波材料的磁性能,另一方面CoFe2O4与煤气化细渣残碳复合能够增加复合材料中的异质界面结构,进而提高煤气化细渣残碳基磁性吸波材料的介电性能;此外,通过调整CoFe2O4的添加量,能够有效调节CoFe2O4/煤气化细渣残碳吸波材料的介电性能和磁性能,实现材料的电-磁协同效应。由于CoFe2O4/煤气化细渣残碳复合材料的异质多界面结构设计和适当的阻抗匹配以及介电损耗和磁损耗之间的协同作用,CoFe2O4/煤气化细渣残碳/石蜡吸波剂表现出优异的且可调控的电磁波吸收性能。当吸波剂厚度为2.44 mm时,反射损耗最强,为−43.99 dB;当吸波剂厚度为1.18 mm时,有效吸收带宽达4.16 GHz。该吸波涂层能够有效地降低完美导体基板的电磁波散射。该研究为合成高效的煤气化细渣残碳基吸波材料提供了一种新的创制方法。
  • Research Article

    Structural and microwave absorption properties of CoFe2O4/residual carbon composites

    + Author Affiliations
    • Electromagnetic interference, which necessitates the rapid advancement of substances with exceptional capabilities for absorbing electromagnetic waves, is of urgent concern in contemporary society. In this work, CoFe2O4/residual carbon from coal gasification fine slag (CFO/RC) composites were created using a novel hydrothermal method. Various mechanisms for microwave absorption, including conductive loss, natural resonance, interfacial dipole polarization, and magnetic flux loss, are involved in these composites. Consequently, compared with pure residual carbon materials, this composite offers superior capabilities in microwave absorption. At 7.76 GHz, the CFO/RC-2 composite achieves an impressive minimum reflection loss (RLmin) of −43.99 dB with a thickness of 2.44 mm. Moreover, CFO/RC-3 demonstrates an effective absorption bandwidth (EAB) of up to 4.16 GHz, accompanied by a thickness of 1.18 mm. This study revealed the remarkable capability of the composite to diminish electromagnetic waves, providing a new generation method for microwave absorbing materials of superior quality.
    • loading
    • [1]
      R. Zhou, Z. Yu, Z.Z. Wu, et al., 3D printing metamaterials for highly efficient electromagnetic wave absorption, Sci. China Mater., 66(2023), No. 4, p. 1283. doi: 10.1007/s40843-022-2352-4
      [2]
      M. Zhu, Y.T. Lei, H. Wu, et al., Porous hybrid scaffold strategy for the realization of lightweight, highly efficient microwave absorbing materials, J. Mater. Sci. Technol., 129(2022), p. 215. doi: 10.1016/j.jmst.2022.04.042
      [3]
      F.C. Gao, J. Huang, Y. Ruan, et al., Unraveling the structure transition and peroxidase mimic activity of copper sites over atomically dispersed copper-doped carbonized polymer dots, Angew. Chem. Int. Ed., 62(2023), No. 7, art. No. e202214042. doi: 10.1002/anie.202214042
      [4]
      L. Wang, R.X. Mao, M.Q. Huang, et al., Heterogeneous interface engineering of high-density MOFs-derived Co nanoparticles anchored on N-doped RGO toward wide-frequency electromagnetic wave absorption, Mater. Today Phys., 35(2023), art. No. 101128. doi: 10.1016/j.mtphys.2023.101128
      [5]
      F.Y. Chu, S.Y. Cheng, Z.M. Ye, et al. , In situ etching by released proton in aniline polymerization to form network VO2 doped polyaniline composites with variable infrared emissivity for electromagnetic absorption application, Adv. Compos. Hybrid Mater., 5(2022), No. 4, p. 2760. doi: 10.1007/s42114-022-00566-4
      [6]
      Y.X. Bi, M.L. Ma, Z.G. Jiao, et al., Enhancing electromagnetic wave absorption performance of one-dimensional C@Co/N-doped C@PPy composite fibers, Carbon, 197(2022), p. 152. doi: 10.1016/j.carbon.2022.05.061
      [7]
      W.H. Huang, S. Wang, X.F. Yang, et al., Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core–shell nanofiber network for enhanced electromagnetic wave adsorption, Carbon, 195(2022), p. 44. doi: 10.1016/j.carbon.2022.04.019
      [8]
      S.D. Yang, R.L. Yang, Z.Q. Lin, et al., Ultrathin, flexible, and high-strength polypyrrole/Ti3C2T x film for wide-band gigahertz and terahertz electromagnetic interference shielding, J. Mater. Chem. A, 10(2022), No. 44, p. 23570. doi: 10.1039/D2TA06805B
      [9]
      P. Song, B. Liu, C.B. Liang, et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities, Nano Micro Lett., 13(2021), No. 1, art. No. 91. doi: 10.1007/s40820-021-00624-4
      [10]
      N.X. Zhai, J.H. Luo, J. Mei, et al., Interface engineering of heterogeneous NiSe2–CoSe2@C@MoSe2 for high-efficient electromagnetic wave absorption, Adv. Funct. Mater., 34(2023), No. 9, art. No. 2312237.
      [11]
      R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, and X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes, Adv. Mater., 16(2004), No. 5, p. 401. doi: 10.1002/adma.200306460
      [12]
      J.Y. Shi, Q. Zhuang, L.P. Wu, et al., Molecular engineering guided dielectric resonance tuning in derived carbon materials, J. Mater. Chem. C, 10(2022), No. 34, p. 12257. doi: 10.1039/D2TC02628G
      [13]
      Z.R. Jia, M.Y. Kong, B.W. Yu, Y.Z. Ma, J.Y. Pan, and G.L. Wu, Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties, J. Mater. Sci. Technol., 127(2022), p. 153. doi: 10.1016/j.jmst.2022.04.005
      [14]
      M.T. Qiao, J.X. Li, D. Wei, et al., Chain-like Fe3O4@void@mSiO2@MnO2 composites with multiple porous shells toward highly effective microwave absorption application, Microporous Mesoporous Mater., 314(2021), art. No. 110867. doi: 10.1016/j.micromeso.2020.110867
      [15]
      J. He, M.J. Han, K. Wen, et al., Absorption-dominated electromagnetic interference shielding assembled composites based on modular design with infrared camouflage and response switching, Compos. Sci. Technol., 231(2023), art. No. 109799. doi: 10.1016/j.compscitech.2022.109799
      [16]
      L. Wang, Z.L. Ma, H. Qiu, Y.L. Zhang, Z. Yu, and J.W. Gu, Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures, Nano Micro Lett., 14(2022), No. 1, art. No. 224. doi: 10.1007/s40820-022-00949-8
      [17]
      J.K. Liu, Z.R. Jia, Y.H. Dong, J.J. Li, X.L. Cao, and G.L. Wu, Structural engineering and compositional manipulation for high-efficiency electromagnetic microwave absorption, Mater. Today Phys., 27(2022), art. No. 100801. doi: 10.1016/j.mtphys.2022.100801
      [18]
      N. Wang, Y. Wang, Z. Lu, R.R. Cheng, L.Q. Yang, and Y.F. Li, Hierarchical core–shell FeS2/Fe7S8@C microspheres embedded into interconnected graphene framework for high-efficiency microwave attenuation, Carbon, 202(2023), p. 254. doi: 10.1016/j.carbon.2022.10.083
      [19]
      Y.C. Zhang, H.X. Li, S.T. Gao, Y. Geng, and C.L. Wu, A study on the chemical state of carbon present in fine ash from gasification, Asia-Pac. J. Chem. Eng., 14(2019), No. 4, art. No. e2336. doi: 10.1002/apj.2336
      [20]
      S.T. Gao, Y.C. Zhang, H.X. Li, J. He, H. Xu, and C.L. Wu, The microwave absorption properties of residual carbon from coal gasification fine slag, Fuel, 290(2021), art. No. 120050. doi: 10.1016/j.fuel.2020.120050
      [21]
      X.Z. Zhang, Y.C. Zhang, J. He, H.X. Li, Y.H. Bai, and S.T. Gao, ZnFe2O4 nanospheres decorated residual carbon from coal gasification fine slag as an ultra-thin microwave absorber, Fuel, 331(2023), art. No. 125811. doi: 10.1016/j.fuel.2022.125811
      [22]
      S.T. Gao, Y.C. Zhang, J. He, et al., Coal gasification fine slag residual carbon decorated with hollow-spherical Fe3O4 nanoparticles for microwave absorption, Ceram. Int., 49(2023), No. 11, p. 17554. doi: 10.1016/j.ceramint.2023.02.122
      [23]
      M.L. Ma, Z.J. Liao, X.W. Su, et al., Magnetic CoNi alloy particles embedded N-doped carbon fibers with polypyrrole for excellent electromagnetic wave absorption, J. Colloid Interface Sci., 608(2022), p. 2203. doi: 10.1016/j.jcis.2021.10.006
      [24]
      J. Xu, R.W. Shu, Z.L. Wan, and J.J. Shi, Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption, J. Mater. Sci. Technol., 132(2023), p. 193. doi: 10.1016/j.jmst.2022.05.050
      [25]
      L. Zhang, Y.X. Zhu, Z.C. Nie, et al., Co/MoC nanoparticles embedded in carbon nanoboxes as robust trifunctional electrocatalysts for a Zn–air battery and water electrocatalysis, ACS Nano, 15(2021), No. 8, p. 13399. doi: 10.1021/acsnano.1c03766
      [26]
      D.M. Zhang, W. He, G.Q. Quan, et al., Sterculia lychnophora seed-derived porous carbon@CoFe2O4 composites with efficient microwave absorption performance, Appl. Surf. Sci., 607(2023), art. No. 155027. doi: 10.1016/j.apsusc.2022.155027
      [27]
      X.X. Zhao, Y. Huang, X.D. Liu, et al., Core–shell CoFe2O4@C nanoparticles coupled with rGO for strong wideband microwave absorption, J. Colloid Interface Sci., 607(2022), p. 192. doi: 10.1016/j.jcis.2021.08.203
      [28]
      M.Z. Ashfaq, A. Ashfaq, M.K. Majeed, et al., Confined tailoring of CoFe2O4/MWCNTs hybrid-architectures to tune electromagnetic parameters and microwave absorption with broadened bandwidth, Ceram. Int., 48(2022), No. 7, p. 9569. doi: 10.1016/j.ceramint.2021.12.155
      [29]
      X.Y. Wang, Q.Q. Li, J.S. Hu, C.H. Zhou, S.X. Yang, and X.H. Huang, Coordination confinement pyrolysis to hollow sea urchin shaped composite with embedded ultrasmall Co/Ni alloy for overall water splitting, Int. J. Hydrogen Energy, 47(2022), No. 6, p. 3699. doi: 10.1016/j.ijhydene.2021.10.243
      [30]
      Y. Li, Y.C. Qing, Y.F. Zhou, et al., Unique nanoporous structure derived from Co3O4–C and Co/CoO–C composites towards the ultra-strong electromagnetic absorption, Composites Part B, 213(2021), art. No. 108731. doi: 10.1016/j.compositesb.2021.108731
      [31]
      J. Wang, M.J. Han, Y.N. Liu, et al., Multifunctional microwave absorption materials of multiscale cobalt sulfide/diatoms co-doped carbon aerogel, J. Colloid Interface Sci., 646(2023), p. 970. doi: 10.1016/j.jcis.2023.05.094
      [32]
      B.B. Zhao, N.N. Wu, S.Y. Yao, et al., Molybdenum carbide/cobalt composite nanorods via a “MOFs plus MOFs” strategy for high-efficiency microwave absorption, ACS Appl. Nano Mater., 5(2022), No. 12, p. 18697. doi: 10.1021/acsanm.2c04460
      [33]
      F.Y. Gan, Q.R. Rao, J.Q. Deng, et al., Controllable architecture of ZnO/FeNi composites derived from trimetallic ZnFeNi layered double hydroxides for high-performance electromagnetic wave absorbers, Small, 19(2023), No. 27, art. No. e2300257. doi: 10.1002/smll.202300257
      [34]
      X.K. Lu, X. Li, W.J. Zhu, and H.L. Xu, Construction of embedded heterostructures in biomass-derived carbon frameworks for enhancing electromagnetic wave absorption, Carbon, 191(2022), p. 600. doi: 10.1016/j.carbon.2022.01.050
      [35]
      R.W. Shu, X.H. Li, and J.J. Shi, Construction of porous carbon-based magnetic composites derived from iron zinc bimetallic metal–organic framework as broadband and high-efficiency electromagnetic wave absorbers, J. Colloid Interface Sci., 633(2023), p. 43. doi: 10.1016/j.jcis.2022.11.078
      [36]
      H.H. Niu, X.W. Jiang, Y.D. Xia, et al., Construction of hydrangea-like core–shell SiO2@Ti3C2T x@CoNi microspheres for tunable electromagnetic wave absorbers, J. Adv. Ceram., 12(2023), No. 4, p. 711. doi: 10.26599/JAC.2023.9220714
      [37]
      B. Jiang, W. Yang, H.X. Bai, et al., Multiscale structure and interface engineering of Fe/Fe3C in situ encapsulated in nitrogen-doped carbon for stable and efficient multi-band electromagnetic wave absorption, J. Mater. Sci. Technol., 158(2023), p. 9. doi: 10.1016/j.jmst.2023.02.030
      [38]
      L. Wang, M.Q. Huang, K. Pei, et al., Confined magnetic vortex motion from metal–organic frameworks derived Ni@C microspheres boosts electromagnetic wave energy dissipation, Adv. Powder Mater., 2(2023), No. 3, art. No. 100111. doi: 10.1016/j.apmate.2023.100111
      [39]
      Z.X. Li, W. Yang, B. Jiang, et al., Engineering of the core–shell boron nitride@nitrogen-doped carbon heterogeneous interface for efficient heat dissipation and electromagnetic wave absorption, ACS Appl. Mater. Interfaces, 15(2023), No. 5, p. 7578. doi: 10.1021/acsami.2c20766
      [40]
      W. Liu, P.T. Duan, C. Mei, et al., Optimizing the size-dependent dielectric properties of metal–organic framework-derived Co/C composites for highly efficient microwave absorption, Inorg. Chem. Front., 8(2021), No. 8, p. 2042. doi: 10.1039/D0QI01502D
      [41]
      B. Li, Z.Q. Ma, J. Xu, X. Zhang, Y.J. Chen, and C.L. Zhu, Regulation of impedance matching and dielectric loss properties of N-doped carbon hollow nanospheres modified with atomically dispersed cobalt sites for microwave energy attenuation, Small, 19(2023), No. 28, art. No. 2301226. doi: 10.1002/smll.202301226
      [42]
      X.W. Meng, J. Qiao, Y.F. Yang, et al., Three-dimensional porous manganese oxide/nickel/carbon microspheres as high-performance electromagnetic wave absorbers with superb photothermal property, J. Colloid Interface Sci., 629(2023), p. 884. doi: 10.1016/j.jcis.2022.09.043
      [43]
      P.G. Yang, W.X. Ye, H.B. Ruan, et al., Core–shell structured silica-coated iron nanowires composites for enhanced electromagnetic wave absorption properties, Int. J. Mol. Sci., 24(2023), No. 10, art. No. 8620. doi: 10.3390/ijms24108620
      [44]
      B. Quan, Y. Chen, Y. Wang, et al., Synergistically enhanced flexibility, mechanical strength and microwave absorption performances of TPE-based hybrid films via thermally assisted homogeneous separation technology, Carbon, 206(2023), p. 392. doi: 10.1016/j.carbon.2023.02.051
      [45]
      F.Y. Hu, X.H. Wang, S. Bao, et al., Tailoring electromagnetic responses of delaminated Mo2TiC2T x MXene through the decoration of Ni particles of different morphologies, Chem. Eng. J., 440(2022), art. No. 135855. doi: 10.1016/j.cej.2022.135855
      [46]
      Z.Q. Ma, M.J. Liu, B. Li, et al., Hierarchically nitrogen-doped carbon hollow microspheres assembled with loose and porous magnetic carbon sheets for enhanced microwave absorption, Carbon, 212(2023), art. No. 118165. doi: 10.1016/j.carbon.2023.118165
      [47]
      F.Y. Hu, F. Zhang, X.H. Wang, et al., Ultrabroad band microwave absorption from hierarchical MoO3/TiO2/Mo2TiC2T x hybrids via annealing treatment, J. Adv. Ceram., 11(2022), No. 9, p. 1466. doi: 10.1007/s40145-022-0624-0
      [48]
      X.J. Zeng, T.L. Nie, C. Zhao, et al., Coupling between the 2D “ligand” and 2D “host” and their assembled hierarchical heterostructures for electromagnetic wave absorption, ACS Appl. Mater. Interfaces, 14(2022), No. 36, p. 41235. doi: 10.1021/acsami.2c12958
      [49]
      H. Gao, C.H. Wang, Z.J. Yang, and Y. Zhang, 3D porous nickel metal foam/polyaniline heterostructure with excellent electromagnetic interference shielding capability and superior absorption based on pre-constructed macroscopic conductive framework, Compos. Sci. Technol., 213(2021), art. No. 108896. doi: 10.1016/j.compscitech.2021.108896
      [50]
      A.M. Xie, X.P. Lin, C. Zhang, S.Y. Cheng, W. Dong, and F. Wu, Oxygen vacancy mediated polymerization of pyrrole on MoO3 to construct dielectric nanocomposites for electromagnetic waves absorption application, J. Alloys Compd., 938(2023), art. No. 168523. doi: 10.1016/j.jallcom.2022.168523
      [51]
      Y.X. Xie, Y.Y. Guo, T.T. Cheng, et al., Efficient electromagnetic wave absorption performances dominated by exchanged resonance of lightweight PC/Fe3O4@PDA hybrid nanocomposite, Chem. Eng. J., 457(2023), art. No. 141205. doi: 10.1016/j.cej.2022.141205
      [52]
      Z.J. Li, H. Lin, Y.X. Xie, et al., Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption, J. Mater. Sci. Technol., 124(2022), p. 182. doi: 10.1016/j.jmst.2022.03.004
      [53]
      X.W. Meng, J. Qiao, S.N. Zheng, et al., Ternary nickel/molybdenum dioxide/carbon composited nanofibers for broadband and strong electromagnetic wave absorption, Chem. Eng. J., 457(2023), art. No. 141241. doi: 10.1016/j.cej.2022.141241
      [54]
      M.Q. Ning, P.H. Jiang, W. Ding, et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz, Adv. Funct. Mater., 31(2021), No. 19, art. No. 2011229. doi: 10.1002/adfm.202011229

    Catalog


    • /

      返回文章
      返回