Cite this article as:

Zijian Peng, Yuhao Wang, Shuqi Wang, Junteng Yao, Qingyuan Zhao, Enyu Xie, Guoliang Chen, Zhigang Wang, Zhanguo Liu, Yaming Wang, and Jiahu Ouyang, Improvement strategy on thermophysical properties of A2B2O7-type rare earth zirconates for thermal barrier coatings applications: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp.1147-1165. https://dx.doi.org/10.1007/s12613-024-2853-4
Zijian Peng, Yuhao Wang, Shuqi Wang, Junteng Yao, Qingyuan Zhao, Enyu Xie, Guoliang Chen, Zhigang Wang, Zhanguo Liu, Yaming Wang, and Jiahu Ouyang, Improvement strategy on thermophysical properties of A2B2O7-type rare earth zirconates for thermal barrier coatings applications: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp.1147-1165. https://dx.doi.org/10.1007/s12613-024-2853-4
引用本文 PDF XML SpringerLink

热障涂层用A2B2O7型稀土锆酸盐热物理性能的改进策略:综述

摘要: 与目前广泛使用的氧化钇部分稳定氧化锆(YSZ)相比,A2B2O7型稀土锆酸盐化合物具有烧结速率更低、相稳定性更好、在高温工作环境下热导率更低等特点,因此被认为是热障涂层(TBCs)的理想候选材料。本文综述了近年来稀土锆酸盐在航空发动机和燃气轮机用热障涂层中的最新研究进展。基于第一性原理、分子动力学和新的数据驱动计算方法,目前掺杂和高熵策略已经在先进的热障涂层材料设计中获得了应用。本文从全工作温度范围内的热传导和在中高温下的热辐射效应两个方面解释了TBCs的固态传热机理。本文还对自适应 TBCs 材料的设计考虑提出了新的见解,并进一步强调了极端环境应用所面临的挑战和潜在的突破。从缺陷工程和材料复合化两方面提出了提高热障涂层材料热物理性能的策略。

 

Improvement strategy on thermophysical properties of A2B2O7-type rare earth zirconates for thermal barrier coatings applications: A review

Abstract: The A2B2O7-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating (TBC) materials because of their low sintering rate, improved phase stability, and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments. This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines. Based on the first principles, molecular dynamics, and new data-driven calculation approaches, doping and high-entropy strategies have now been adopted in advanced TBC materials design. In this paper, the solid-state heat transfer mechanism of TBCs is explained from two aspects, including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature. This paper also provides new insights into design considerations of adaptive TBC materials, and the challenges and potential breakthroughs are further highlighted for extreme environmental applications. Strategies for improving thermophysical performance are proposed in two approaches: defect engineering and material compositing.

 

/

返回文章
返回