Cite this article as:

Hongming Mou, Ziyao Lu, Yuchen Pu, Zhaochu Luo, and Xiaozhong Zhang, Spin logic devices based on negative differential resistance-enhanced anomalous Hall effect, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp.1437-1448. https://dx.doi.org/10.1007/s12613-024-2855-2
Hongming Mou, Ziyao Lu, Yuchen Pu, Zhaochu Luo, and Xiaozhong Zhang, Spin logic devices based on negative differential resistance-enhanced anomalous Hall effect, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp.1437-1448. https://dx.doi.org/10.1007/s12613-024-2855-2
引用本文 PDF XML SpringerLink

基于负微分电阻增强反常霍尔效应的自旋逻辑器件

摘要: 由于自旋电子学的飞速发展,自旋逻辑器件已成为下一代计算技术中大有可为的工具。本文全面综述了自旋逻辑器件的最新进展,尤其关注植根于纳米磁体、磁阻随机存取存储器、自旋轨道力矩、电场调制和磁畴壁移动的原型器件。本文全面分析了这些器件的工作原理,并总结了基于负微分电阻增强反常霍尔效应的自旋逻辑器件的最新进展。基于负微分电阻增强反常霍尔效应的自旋逻辑器件具有可重构逻辑功能,并集成了非易失性数据存储和计算功能。对于电流驱动的自旋逻辑器件,采用负微分电阻元件来非线性地增强来自磁比特的反常霍尔效应信号,可以实现可重构的布尔逻辑运算。电压驱动型自旋逻辑器件采用了另一种负微分电阻元件,不仅能够可重构的实现布尔逻辑功能并拥有出色的级联能力。通过级联多个基本逻辑门,可以得到全加法器的逻辑电路,从而验证了电压驱动自旋逻辑器件实现复杂逻辑功能的潜力。这篇综述有助于人们了解自旋逻辑器件不断发展的前景,并强调了自旋逻辑器件为未来新兴计算方案提供的广阔前景。

 

Spin logic devices based on negative differential resistance-enhanced anomalous Hall effect

Abstract: Owing to rapid developments in spintronics, spin-based logic devices have emerged as promising tools for next-generation computing technologies. This paper provides a comprehensive review of recent advancements in spin logic devices, particularly focusing on fundamental device concepts rooted in nanomagnets, magnetoresistive random access memory, spin–orbit torques, electric-field modulation, and magnetic domain walls. The operation principles of these devices are comprehensively analyzed, and recent progress in spin logic devices based on negative differential resistance-enhanced anomalous Hall effect is summarized. These devices exhibit reconfigurable logic capabilities and integrate nonvolatile data storage and computing functionalities. For current-driven spin logic devices, negative differential resistance elements are employed to nonlinearly enhance anomalous Hall effect signals from magnetic bits, enabling reconfigurable Boolean logic operations. Besides, voltage-driven spin logic devices employ another type of negative differential resistance element to achieve logic functionalities with excellent cascading ability. By cascading several elementary logic gates, the logic circuit of a full adder can be obtained, and the potential of voltage-driven spin logic devices for implementing complex logic functions can be verified. This review contributes to the understanding of the evolving landscape of spin logic devices and underscores the promising prospects they offer for the future of emerging computing schemes.

 

/

返回文章
返回