留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 6
Jun.  2024

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  978
  • HTML全文浏览量:  166
  • PDF下载量:  18
  • 被引次数: 0
Hongming Mou, Ziyao Lu, Yuchen Pu, Zhaochu Luo, and Xiaozhong Zhang, Spin logic devices based on negative differential resistance-enhanced anomalous Hall effect, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1437-1448. https://doi.org/10.1007/s12613-024-2855-2
Cite this article as:
Hongming Mou, Ziyao Lu, Yuchen Pu, Zhaochu Luo, and Xiaozhong Zhang, Spin logic devices based on negative differential resistance-enhanced anomalous Hall effect, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1437-1448. https://doi.org/10.1007/s12613-024-2855-2
引用本文 PDF XML SpringerLink
特约综述

基于负微分电阻增强反常霍尔效应的自旋逻辑器件


  • 通讯作者:

    罗昭初    E-mail: zhaochu.luo@pku.edu.cn

    章晓中    E-mail: xzzhang@mail.tsinghua.edu.cn

文章亮点

  • (1) 全面总结了自旋逻辑器件的最新进展,尤其关注基于纳米磁体、磁阻随机存取存储器、自旋轨道力矩、电场调制和磁畴壁移动的原型器件。
  • (2) 提出了基于负微分电阻增强反常霍尔效应的自旋逻辑器件实现全部16种二输入布尔逻辑门的方法。
  • (3) 总结了基于负微分电阻增强反常霍尔效应的自旋逻辑器件的其他最新进展。
  • 由于自旋电子学的飞速发展,自旋逻辑器件已成为下一代计算技术中大有可为的工具。本文全面综述了自旋逻辑器件的最新进展,尤其关注植根于纳米磁体、磁阻随机存取存储器、自旋轨道力矩、电场调制和磁畴壁移动的原型器件。本文全面分析了这些器件的工作原理,并总结了基于负微分电阻增强反常霍尔效应的自旋逻辑器件的最新进展。基于负微分电阻增强反常霍尔效应的自旋逻辑器件具有可重构逻辑功能,并集成了非易失性数据存储和计算功能。对于电流驱动的自旋逻辑器件,采用负微分电阻元件来非线性地增强来自磁比特的反常霍尔效应信号,可以实现可重构的布尔逻辑运算。电压驱动型自旋逻辑器件采用了另一种负微分电阻元件,不仅能够可重构的实现布尔逻辑功能并拥有出色的级联能力。通过级联多个基本逻辑门,可以得到全加法器的逻辑电路,从而验证了电压驱动自旋逻辑器件实现复杂逻辑功能的潜力。这篇综述有助于人们了解自旋逻辑器件不断发展的前景,并强调了自旋逻辑器件为未来新兴计算方案提供的广阔前景。
  • Invited Review

    Spin logic devices based on negative differential resistance-enhanced anomalous Hall effect

    + Author Affiliations
    • Owing to rapid developments in spintronics, spin-based logic devices have emerged as promising tools for next-generation computing technologies. This paper provides a comprehensive review of recent advancements in spin logic devices, particularly focusing on fundamental device concepts rooted in nanomagnets, magnetoresistive random access memory, spin–orbit torques, electric-field modulation, and magnetic domain walls. The operation principles of these devices are comprehensively analyzed, and recent progress in spin logic devices based on negative differential resistance-enhanced anomalous Hall effect is summarized. These devices exhibit reconfigurable logic capabilities and integrate nonvolatile data storage and computing functionalities. For current-driven spin logic devices, negative differential resistance elements are employed to nonlinearly enhance anomalous Hall effect signals from magnetic bits, enabling reconfigurable Boolean logic operations. Besides, voltage-driven spin logic devices employ another type of negative differential resistance element to achieve logic functionalities with excellent cascading ability. By cascading several elementary logic gates, the logic circuit of a full adder can be obtained, and the potential of voltage-driven spin logic devices for implementing complex logic functions can be verified. This review contributes to the understanding of the evolving landscape of spin logic devices and underscores the promising prospects they offer for the future of emerging computing schemes.
    • loading
    • [1]
      H. Li and Y.R. Chen, An overview of non-volatile memory technology and the implication for tools and architectures, [in] 2009 Design , Automation & Test in Europe Conference & Exhibition, Nice. 2009, p. 731.
      [2]
      A. Hoffmann and S.D. Bader, Opportunities at the frontiers of spintronics, Phys. Rev. Applied, 4(2015), No. 4, art. No. 047001. doi: 10.1103/PhysRevApplied.4.047001
      [3]
      B. Dieny, I.L. Prejbeanu, K. Garello, et al., Opportunities and challenges for spintronics in the microelectronics industry, Nat. Electron., 3(2020), No. 8, p. 446. doi: 10.1038/s41928-020-0461-5
      [4]
      G. Finocchio, M. Di Ventra, K.Y. Camsari, K. Everschor-Sitte, P. Khalili Amiri, and Z.M. Zeng, The promise of spintronics for unconventional computing, J. Magn. Magn. Mater., 521(2021), art. No. 167506. doi: 10.1016/j.jmmm.2020.167506
      [5]
      C.C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari, Bridging the processor-memory performance gap with 3D IC technology, IEEE Des. Test Comput., 22(2005), No. 6, p. 556. doi: 10.1109/MDT.2005.134
      [6]
      X.X. Wu, J. Li, L.X. Zhang, E. Speight, R. Rajamony, and Y. Xie, Hybrid cache architecture with disparate memory technologies, ACM SIGARCH Comput. Archit. News, 37(2009), No. 3, p. 34. doi: 10.1145/1555815.1555761
      [7]
      M. Horowitz, 1.1 Computing’s energy problem (and what we can do about it), [in] 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC ), San Francisco, 2014, p. 10.
      [8]
      J. Backus, Can programming be liberated from the von Neumann style?, Commun. ACM, 21(1978), No. 8, p. 613. doi: 10.1145/359576.359579
      [9]
      D.L. Fan, S. Angizi, and Z.Z. He, In-memory computing with spintronic devices, [in] 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI ), Bochum, 2017, p. 683.
      [10]
      S.A. Wolf, D.D. Awschalom, R.A. Buhrman, et al., Spintronics: A spin-based electronics vision for the future, Science, 294(2001), No. 5546, p. 1488. doi: 10.1126/science.1065389
      [11]
      A. Imre, G. Csaba, L. Ji, A. Orlov, G.H. Bernstein, and W. Porod, Majority logic gate for magnetic quantum-dot cellular automata, Science, 311(2006), No. 5758, p. 205. doi: 10.1126/science.1120506
      [12]
      D. Bhowmik, L. You, and S. Salahuddin, Spin Hall effect clocking of nanomagnetic logic without a magnetic field, Nat. Nanotechnol., 9(2014), No. 1, p. 59. doi: 10.1038/nnano.2013.241
      [13]
      M. Zabihi, Z.I. Chowdhury, Z.Y. Zhao, U.R. Karpuzcu, J.P. Wang, and S.S. Sapatnekar, In-memory processing on the spintronic CRAM: From hardware design to application mapping, IEEE Trans. Comput., 68(2019), No. 8, p. 1159. doi: 10.1109/TC.2018.2858251
      [14]
      M.K. Zhao, C.H. Wan, X.M. Luo, et al., Field-free programmable spin logics based on spin Hall effect, Appl. Phys. Lett., 119(2021), No. 21, art. No. 212405. doi: 10.1063/5.0067879
      [15]
      R.Z. Li, Y.C. Li, Y. Sheng, Z.A. Bekele, and K.Y. Wang, All-electrical multifunctional spin logics by adjusting the spin current density gradient in a single device, ACS Appl. Electron. Mater., 3(2021), No. 6, p. 2646. doi: 10.1021/acsaelm.1c00248
      [16]
      X. Wang, C.H. Wan, W.J. Kong, et al., Field-free programmable spin logics via chirality-reversible spin–orbit torque switching, Adv. Mater., 30(2018), No. 31, art. No. e1801318. doi: 10.1002/adma.201801318
      [17]
      C.H. Wan, X. Zhang, Z.H. Yuan, et al., Programmable spin logic based on spin Hall effect in a single device, Adv. Electron. Mater., 3(2017), No. 3, art. No. 1600282 doi: 10.1002/aelm.201600282
      [18]
      X. Zhang, C.H. Wan, Z.H. Yuan, et al., Experimental demonstration of programmable multi-functional spin logic cell based on spin Hall effect, J. Magn. Magn. Mater., 428(2017), p. 401. doi: 10.1016/j.jmmm.2016.12.113
      [19]
      N. Zhang, Y. Cao, Y.C. Li, et al., Complementary lateral-spin–orbit building blocks for programmable logic and In-memory computing, Adv. Electron. Mater., 6(2020), No. 8, art. No. 2000296. doi: 10.1002/aelm.202000296
      [20]
      M.L. Li, C.X. Li, X.G. Xu, et al., An ultrathin flexible programmable spin logic device based on spin–orbit torque, Nano Lett., 23(2023), No. 9, p. 3818. doi: 10.1021/acs.nanolett.3c00231
      [21]
      D. Chiba, S. Fukami, K. Shimamura, N. Ishiwata, K. Kobayashi, and T. Ono, Electrical control of the ferromagnetic phase transition in cobalt at room temperature, Nat. Mater., 10(2011), No. 11, p. 853. doi: 10.1038/nmat3130
      [22]
      Y. Shiota, T. Nozaki, F. Bonell, S. Murakami, T. Shinjo, and Y. Suzuki, Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses, Nat. Mater., 11(2012), No. 1, p. 39. doi: 10.1038/nmat3172
      [23]
      X.X. Zhang, L. Li, D. Weber, J. Goldberger, K.F. Mak, and J. Shan, Gate-tunable spin waves in antiferromagnetic atomic bilayers, Nat. Mater., 19(2020), No. 8, p. 838. doi: 10.1038/s41563-020-0713-9
      [24]
      S. Zhang, Y.G. Zhao, P.S. Li, et al., Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 structure at room temperature, Phys. Rev. Lett., 108(2012), No. 13, art. No. 137203. doi: 10.1103/PhysRevLett.108.137203
      [25]
      T. Wu, A. Bur, K. Wong, et al., Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices, Appl. Phys. Lett., 98(2011), No. 26, art. No. 262504. doi: 10.1063/1.3605571
      [26]
      X.Z. Chen, S.Y. Shi, G.Y. Shi, et al., Observation of the antiferromagnetic spin Hall effect, Nat. Mater., 20(2021), No. 6, p. 800. doi: 10.1038/s41563-021-00946-z
      [27]
      P. Borisov, A. Hochstrat, X. Chen, W. Kleemann, and C. Binek, Magnetoelectric Switching of Exchange Bias, Phys. Rev. Lett., 94(2005). No. 11, art. No. 117203.
      [28]
      X. He, Y. Wang, N. Wu, et al., Robust isothermal electric control of exchange bias at room temperature, Nat. Mater., 9(2010), No. 7, p. 579. doi: 10.1038/nmat2785
      [29]
      W. Echtenkamp and C. Binek, Electric control of exchange bias training, Phys. Rev. Lett., 111(2013), No. 18, art. No. 187204. doi: 10.1103/PhysRevLett.111.187204
      [30]
      Y.Y. Wang, X. Zhou, C. Song, et al., Electrical control of the exchange spring in antiferromagnetic metals, Adv. Mater., 27(2015), No. 20, p. 3196. doi: 10.1002/adma.201405811
      [31]
      J.T. Heron, J.L. Bosse, Q. He, et al., Deterministic switching of ferromagnetism at room temperature using an electric field, Nature, 516(2014), No. 7531, p. 370. doi: 10.1038/nature14004
      [32]
      X. Han, Y.B. Fan, D. Wang, et al., Fully electrical controllable spin–orbit torque based half-adder, Appl. Phys. Lett., 122(2023), No. 5, art. No. 052404. doi: 10.1063/5.0130902
      [33]
      B. Cui, C. Song, H.J. Mao, et al., Manipulation of electric field effect by orbital switch, Adv. Funct. Mater., 26(2016), No. 5, p. 753. doi: 10.1002/adfm.201504036
      [34]
      M.K. Niranjan, C.G. Duan, S.S. Jaswal, and E.Y. Tsymbal, Electric field effect on magnetization at the Fe/MgO(001) interface, Appl. Phys. Lett., 96(2010), No. 22, art. No. 222504. doi: 10.1063/1.3443658
      [35]
      U. Bauer, L.D. Yao, A.J. Tan, et al., Magneto-ionic control of interfacial magnetism, Nat. Mater., 14(2015), No. 2, p. 174. doi: 10.1038/nmat4134
      [36]
      C. Bi, Y.H. Liu, T. Newhouse-Illige, et al., Reversible control of Co magnetism by voltage-induced oxidation, Phys. Rev. Lett., 113(2014), No. 26, art. No. 267202. doi: 10.1103/PhysRevLett.113.267202
      [37]
      Z.Y. Ren, M.X. Wang, P.F. Liu, et al., Spin logical and memory device based on the nonvolatile ferroelectric control of the perpendicular magnetic anisotropy in PbZr0.2Ti0.8O3/Co/Pt heterostructure, Adv. Electron. Mater., 6(2020), No. 6, art. No. 2000102. doi: 10.1002/aelm.202000102
      [38]
      S.H C. Baek, K.W. Park, D.S. Kil, et al., Complementary logic operation based on electric-field controlled spin–orbit torques, Nat. Electron., 1(2018), No. 7, p. 398. doi: 10.1038/s41928-018-0099-8
      [39]
      Z.D. Zhang, Y.W. Zhang, R.S. Wang, L. Zeng, and R. Huang, Reconfigurable logic based on voltage-controlled magnetic tunnel junction (VC-MTJ) for stochastic computing, [in] 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT ), Qingdao, 2018, p. 1.
      [40]
      S. Shreya, A. Jain, and B.K. Kaushik, Computing-in-memory architecture using energy-efficient multilevel voltage-controlled spin-orbit torque device, IEEE Trans. Electron Devices, 67(2020), No. 5, p. 1972. doi: 10.1109/TED.2020.2978085
      [41]
      D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, and R.P. Cowburn, Magnetic domain-wall logic, Science, 309(2005), No. 5741, p. 1688. doi: 10.1126/science.1108813
      [42]
      D.A. Allwood, G. Xiong, M.D. Cooke, et al., Submicrometer ferromagnetic NOT gate and shift register, Science, 296(2002), No. 5575, p. 2003. doi: 10.1126/science.1070595
      [43]
      K.A. Omari and T.J. Hayward, Chirality-based vortex domain-wall logic gates, Phys. Rev. Applied, 2(2014), No. 4, art. No. 044001. doi: 10.1103/PhysRevApplied.2.044001
      [44]
      Z.C. Luo, A. Hrabec, T.P. Dao, et al., Current-driven magnetic domain-wall logic, Nature, 579(2020), No. 7798, p. 214. doi: 10.1038/s41586-020-2061-y
      [45]
      Z.R. Yan, Y.Z. Liu, Y. Guang, et al., Skyrmion-based programmable logic device with complete Boolean logic functions, Phys. Rev. Applied, 15(2021), No. 6, art. No. 064004. doi: 10.1103/PhysRevApplied.15.064004
      [46]
      Z.Z. Zhang, K.L. Lin, Y. Zhang, et al., Magnon scattering modulated by omnidirectional hopfion motion in antiferromagnets for meta-learning, Sci. Adv., 9(2023), No. 6, art. No. eade7439. doi: 10.1126/sciadv.ade7439
      [47]
      Z.C. Luo, Z.Y. Lu, C.Y. Xiong, et al., Reconfigurable magnetic logic combined with nonvolatile memory writing, Adv. Mater., 29(2017), No. 4, art. No. 1605027. doi: 10.1002/adma.201605027
      [48]
      B. Avanic, G. Gonzalez, K. Premaratne, and A. Rodriguez, Negative resistance design for crystal oscillators, Int. J. Electron., 67(1989), No. 6, p. 869. doi: 10.1080/00207218908921137
      [49]
      M. Son, J. Lee, J. Park, et al., Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications, IEEE Electron Device Lett., 32(2011), No. 11, p. 1579. doi: 10.1109/LED.2011.2163697
      [50]
      J. Sakai, High-efficiency voltage oscillation in VO2 planer-type junctions with infinite negative differential resistance, J. Appl. Phys., 103(2008), No. 10, art. No. 103708. doi: 10.1063/1.2930959
      [51]
      H.M. Mou, Z.C. Luo, and X.Z. Zhang, A magnetic-field-driven neuristor for spiking neural networks, Appl. Phys. Lett., 122(2023), No. 25, art. No. 250601. doi: 10.1063/5.0158341
      [52]
      A.R. Bonnefoi, T.C. McGill, and R.D. Burnham, Resonant tunneling transistors with controllable negative differential resistances, IEEE Electron Device Lett., 6(1985), No. 12, p. 636. doi: 10.1109/EDL.1985.26258
      [53]
      Z.Y. Lu, C.Y. Xiong, H.M. Mou, et al., Nonvolatile magnetic half adder combined with memory writing, Appl. Phys. Lett., 118(2021), No. 18, art. No. 182402. doi: 10.1063/5.0048448
      [54]
      R. Singh, Z.C. Luo, Z.Y. Lu, A.S. Saleemi, C.Y. Xiong, and X.Z. Zhang, Thermal stability of NDR-assisted anomalous Hall effect based magnetic device, J. Appl. Phys., 125(2019), No. 20, art. No. 203901. doi: 10.1063/1.5088916
      [55]
      Y.C. Pu, H.M. Mou, Z.Y. Lu, et al., Speed enhancement of magnetic logic-memory device by insulator-to-metal transition, Appl. Phys. Lett., 117(2020), No. 2, art. No. 022407. doi: 10.1063/5.0013301
      [56]
      L.Q. Liu, C.F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, and R.A. Buhrman, Spin-torque switching with the giant spin Hall effect of tantalum, Science, 336(2012), No. 6081, p. 555. doi: 10.1126/science.1218197
      [57]
      Y.C. Pu, Z.Y. Lu, H.M. Mou, X.X. Zhang, and X.Z. Zhang, Ultrafast and ultralow-power voltage-dominated magnetic logic, Adv. Intell. Syst., 4(2022), No. 5, art. No. 2100157. doi: 10.1002/aisy.202100157
      [58]
      Z.X. Lu, Research on Magnetic Logic Devices Based on Magnetic Films with Perpendicular Magnetic Anisotropy [Dissertation], Tsinghua University, Beijing, 2022, p. 73.
      [59]
      S. Garg and T.K. Gupta, FDSTDL: Low-power technique for FinFET domino circuits, Int. J. Circuit Theory Appl., 47(2019), No. 6, p. 917. doi: 10.1002/cta.2627
      [60]
      Z.Y. Lu, H.M. Mou, Y.C. Pu, Y. Wen, X.X. Zhang, and X.Z. Zhang, Magnetic full adder based on negative differential resistance-enhanced anomalous Hall effect, IEEE Magn. Lett., 13(2022), art. No. 4502405. doi: 10.1109/LMAG.2022.3146132

    Catalog


    • /

      返回文章
      返回