留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(14)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  987
  • HTML全文浏览量:  239
  • PDF下载量:  41
  • 被引次数: 0
Guonan Ma, Shize Zhu, Dong Wang, Peng Xue, Bolü Xiao, and Zongyi Ma, Effect of heat treatment on the microstructure, mechanical properties and fracture behaviors of ultra-high-strength SiC/Al–Zn–Mg–Cu composites, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2233-2243. https://doi.org/10.1007/s12613-024-2856-1
Cite this article as:
Guonan Ma, Shize Zhu, Dong Wang, Peng Xue, Bolü Xiao, and Zongyi Ma, Effect of heat treatment on the microstructure, mechanical properties and fracture behaviors of ultra-high-strength SiC/Al–Zn–Mg–Cu composites, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2233-2243. https://doi.org/10.1007/s12613-024-2856-1
引用本文 PDF XML SpringerLink
研究论文

热处理对超高强度SiC/Al–Zn–Mg–Cu复合材料微观组织、力学性能和断裂行为的影响


  • 通讯作者:

    王东    E-mail: dongwang@imr.ac.cn

    薛鹏    E-mail: pxue@imr.ac.cn

文章亮点

  • (1) 系统地研究了780MPa级SiC/Al–Zn–Mg–Cu复合材料的物相演变规律和力学行为
  • (2) 阐明了影响高锌含量SiC/Al–Zn–Mg–Cu复合材料力学性能的关键因素
  • (3) 揭示了超高强度SiC/Al–Zn–Mg–Cu复合材料失效断裂特征和机理
  • SiC/Al–Zn–Mg–Cu铝基复合材料具有可以媲美钛合金的抗拉强度和弹性模量,作为轻量化结构材料的应用潜力巨大,成为了近年来的研究热点。增加合金元素含量,尤其是Zn元素,是提高Al–Zn–Mg–Cu系铝基复合材料力学性能的有效手段。然而,提高合金含量意味着沉淀相的种类、含量和分布可能发生变化,从而影响复合材料的力学性能和断裂行为。本文旨在开发一种超高强度铝基复合材料,阐明影响其力学性能的关键因素,为材料组织调控提供理论基础。本研究采用粉末冶金和热挤压变形的方法,制备了含12%SiC(体积分数)颗粒的SiC/Al–13.3Zn–3.27Mg–1.07Cu(质量分数,%)复合材料,通过微观组织表征、硬度、电导率和力学性能测试系统地优化了固溶和时效处理工艺,研究了第二相演化及其对复合材料微观组织、力学性能和断裂机制的影响规律。结果表明:双级固溶(470°C/1 h + 480°C/1 h)和低温时效(100°C/22 h)处理可以获得第二相充分溶解且纳米析出相均匀分布的微观组织,最佳抗拉强度可达781 MPa。断口分析表明,沿晶断裂和界面脱粘是超高强度SiC/Al–Zn–Mg–Cu复合材料的主要断裂机制。SiC/Al界面和高角度晶界处存在无析带,是限制复合材料强度提高的主要因素。界面反应产物MgO以及第二相MgZn2和Cu5Zn8优先在SiC/Al界面形核并长大,降低界面结合强度,进一步导致界面开裂。
  • Research Article

    Effect of heat treatment on the microstructure, mechanical properties and fracture behaviors of ultra-high-strength SiC/Al–Zn–Mg–Cu composites

    + Author Affiliations
    • A high-zinc composite, 12vol% SiC/Al–13.3 Zn–3.27 Mg–1.07Cu (wt%), with an ultra-high-strength of 781 MPa was successfully fabricated through a powder metallurgy method, followed by an extrusion process. The effects of solid-solution and aging heat treatments on the microstructure and mechanical properties of the composite were extensively investigated. Compared with a single-stage solid-solution treatment, a two-stage solid-solution treatment (470°C/1 h + 480°C/1 h) exhibited a more effective solid-solution strengthening owing to the higher degree of solid-solution and a more uniform microstructure. According to the aging hardness curves of the composite, the optimized aging parameter (100°C/22 h) was determined. Reducing the aging temperature and time resulted in finer and more uniform nanoscale precipitates but only yielded a marginal increase in tensile strength. The fractography analysis revealed that intergranular cracking and interface debonding were the main fracture mechanisms in the ultra-high-strength SiC/Al–Zn–Mg–Cu composites. Weak regions, such as the SiC/Al interface containing numerous compounds and the precipitate-free zones at the high-angle grain boundaries, were identified as significant factors limiting the strength enhancement of the composite. Interfacial compounds, including MgO, MgZn2, and Cu5Zn8, reduced the interfacial bonding strength, leading to interfacial debonding.
    • loading
    • [1]
      Y.Q. Zhao, T. Tian, H.L. Jia, et al., Effects of Mg/Zn ratio and pre-aging on microstructure and mechanical properties of Al–Mg–Zn–Cu alloys, J. Mater. Res. Technol., 27(2023), p. 1874. doi: 10.1016/j.jmrt.2023.09.319
      [2]
      M. Ao, Y.C. Ji, P. Yi, et al., Relationship between elements migration of α-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al–Zn–Mg alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 112. doi: 10.1007/s12613-022-2428-1
      [3]
      C.Y. Wen, J. Tang, W.T. Chen, et al., Deformation mechanisms and mechanical properties of the high-strength and ductile Al–Zn–Mg–Cu alloys processed by repetitive continuous extrusion forming process with different heat treatments, J. Alloys Compd., 965(2023), art. No. 171006. doi: 10.1016/j.jallcom.2023.171006
      [4]
      A. Ditta, L.J. Wei, Y.J. Xu, and S.J. Wu, Microstructural characteristics and properties of spray formed Zn-rich Al–Zn–Mg–Cu alloy under various aging conditions, Mater. Charact., 161(2020), art. No. 110133. doi: 10.1016/j.matchar.2020.110133
      [5]
      K. Wen, B.Q. Xiong, Y.A. Zhang, et al., Over-aging influenced matrix precipitate characteristics improve fatigue crack propagation in a high Zn-containing Al–Zn–Mg–Cu alloy, Mater. Sci. Eng. A, 716(2018), p. 42. doi: 10.1016/j.msea.2018.01.040
      [6]
      M.M. Sharma, M.F. Amateau, and T.J. Eden, Aging response of Al–Zn–Mg–Cu spray formed alloys and their metal matrix composites, Mater. Sci. Eng. A, 424(2006), No. 1-2, p. 87. doi: 10.1016/j.msea.2006.02.047
      [7]
      X.D. Wang, Q.L. Pan, L.L. Liu, et al., Characterization of hot extrusion and heat treatment on mechanical properties in a spray formed ultra-high strength Al–Zn–Mg–Cu alloy, Mater. Charact., 144(2018), p. 131. doi: 10.1016/j.matchar.2018.07.012
      [8]
      A. Sharma, M.C. Oh, J.T. Kim, A.K. Srivastava, and B. Ahn, Investigation of electrochemical corrosion behavior of additive manufactured Ti–6Al–4V alloy for medical implants in different electrolytes, J. Alloys Compd., 830(2020), art. No. 154620. doi: 10.1016/j.jallcom.2020.154620
      [9]
      X.N. Peng, H.Z. Guo, T. Wang, and Z.K. Yao, Effects of β treatments on microstructures and mechanical properties of TC4-DT titanium alloy, Mater. Sci. Eng. A, 533(2012), p. 55. doi: 10.1016/j.msea.2011.11.033
      [10]
      A. David, S.K. Gopal, P. Lakshmanan, and A.S. Chenbagam, Corrosion, mechanical and microstructural properties of aluminum 7075–carbon nanotube nanocomposites for robots in corrosive environments, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1140. doi: 10.1007/s12613-022-2592-3
      [11]
      X.L. Guo, Q. Guo, J.H. Nie, et al., Particle size effect on the interfacial properties of SiC particle-reinforced Al–Cu–Mg composites, Mater. Sci. Eng. A, 711(2018), p. 643. doi: 10.1016/j.msea.2017.11.068
      [12]
      S.Z. Zhu, G.N. Ma, D. Wang, B.L. Xiao, and Z.Y. Ma, Suppressed negative influence of natural aging in SiCp/6092Al composites, Mater. Sci. Eng. A, 767(2019), art. No. 138422. doi: 10.1016/j.msea.2019.138422
      [13]
      G.N. Ma, D. Wang, Z.Y. Liu, B.L. Xiao, and Z.Y. Ma, An investigation on particle weakening in T6-treated SiC/Al–Zn–Mg–Cu composites, Mater. Charact., 158(2019), art. No. 109966. doi: 10.1016/j.matchar.2019.109966
      [14]
      G.N. Ma, D. Wang, B.L. Xiao, and Z.Y. Ma, Effect of particle size on mechanical properties and fracture behaviors of age-hardening SiC/Al–Zn–Mg–Cu composites, Acta Metall. Sin. Engl. Lett., 34(2021), No. 10, p. 1447. doi: 10.1007/s40195-021-01254-w
      [15]
      S. Liu, Q. Yuan, Y.T. Sima, C.X. Liu, F. Han, and W.W. Qiao, Wear behavior of Zn–38Al–3.5Cu–1.2Mg/SiCp composite under different stabilization treatments, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1270. doi: 10.1007/s12613-020-2217-7
      [16]
      J.Y. Song, Q. Guo, Q.B. Ouyang, et al., Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al–Zn–Mg–Cu composites, Mater. Sci. Eng. A, 644(2015), No., p. 79.
      [17]
      Q. Liu, F. Ye, Y. Gao, S.C. Liu, H.X. Yang, and Z.Q. Zhou, Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties, J. Alloys Compd., 585(2014), p. 146. doi: 10.1016/j.jallcom.2013.09.140
      [18]
      A. Ghosh, M. Ghosh, and R. Kalsar, Influence of homogenisation time on evolution of eutectic phases, dispersoid behaviour and crystallographic texture for Al–Zn–Mg–Cu–Ag alloy, J. Alloys Compd., 802(2019), p. 276. doi: 10.1016/j.jallcom.2019.06.091
      [19]
      H.C. Li, F.Y. Cao, S. Guo, et al., Effects of Mg and Cu on microstructures and properties of spray-deposited Al–Zn–Mg–Cu alloys, J. Alloys Compd., 719(2017), p. 89. doi: 10.1016/j.jallcom.2017.05.101
      [20]
      W.H. Yuan, J. Zhang, C.C. Zhang, and Z.H. Chen, Processing of ultra-high strength SiCp/Al–Zn–Mg–Cu composites, J. Mater. Process. Technol., 209(2009), No. 7, p. 3251. doi: 10.1016/j.jmatprotec.2008.07.030
      [21]
      S. Gatea, H.G. Ou, and G. McCartney, Deformation and fracture characteristics of Al6092/SiC/17.5p metal matrix composite sheets due to heat treatments, Mater. Charact., 142(2018), p. 365. doi: 10.1016/j.matchar.2018.05.050
      [22]
      L. Chen, F.P. Yuan, P. Jiang, J.J. Xie, and X.L. Wu, Mechanical properties and deformation mechanism of Mg–Al–Zn alloy with gradient microstructure in grain size and orientation, [in] X.L. Wu and Y.T. Zhu, eds., Heterostructured Materials, Jenny Stanford Publishing, New York, 2021, p. 417.
      [23]
      A. Ureña, E.E. Martı́nez, P. Rodrigo, and L. Gil, Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites, Compos. Sci. Technol., 64(2004), No. 12, p. 1843. doi: 10.1016/j.compscitech.2004.01.010
      [24]
      G.E. Kiourtsidis, S.M. Skolianos, and G.A. Litsardakis, Aging response of aluminium alloy 2024/silicon carbide particles (SiCp) composites, Mater. Sci. Eng. A, 382(2004), No. 1-2, p. 351. doi: 10.1016/j.msea.2004.05.021
      [25]
      Z.P. Luo, Crystallography of SiC/MgAl2O4/Al interfaces in a pre-oxidized SiC reinforced SiC/Al composite, Acta Mater., 54(2006), No. 1, p. 47. doi: 10.1016/j.actamat.2005.08.022
      [26]
      B. Li, B.H. Luo, K.J. He, L.Z. Zeng, W.L. Fan, and Z.H. Bai, Effect of aging on interface characteristics of Al–Mg–Si/SiC composites, J. Alloys Compd., 649(2015), p. 495. doi: 10.1016/j.jallcom.2015.07.033
      [27]
      W.Y. Wang, Q.L. Pan, X.D. Wang, et al., Non-isothermal aging: A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultra-high strength Al–Zn–Mg–Cu alloy, J. Alloys Compd., 845(2020), art. No. 156286. doi: 10.1016/j.jallcom.2020.156286
      [28]
      X.B. Yang, J.H. Chen, J.Z. Liu, et al., Spherical constituent particles formed by a multistage solution treatment in Al–Zn–Mg–Cu alloys, Mater. Charact., 83(2013), p. 79. doi: 10.1016/j.matchar.2013.06.005
      [29]
      D.K. Xu, P.A. Rometsch, and N. Birbilis, Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part I. Characterisation of constituent particles and overheating, Mater. Sci. Eng. A, 534(2012), p. 234. doi: 10.1016/j.msea.2011.11.065
      [30]
      P. Dai, X. Luo, Y.Q. Yang, et al., Thermal stability analysis of a lightweight Al–Zn–Mg–Cu alloy by TEM and tensile tests, Mater. Charact., 153(2019), p. 271. doi: 10.1016/j.matchar.2019.05.018
      [31]
      S.H. Lee, J.G. Jung, S.I. Baik, et al., Effects of Ti addition on the microstructure and mechanical properties of Al–Zn–Mg–Cu–Zr alloy, Mater. Sci. Eng. A, 801(2021), art. No. 140437. doi: 10.1016/j.msea.2020.140437
      [32]
      D.M. Liu, B.Q. Xiong, F.G. Bian, et al., Quantitative study of nanoscale precipitates in Al–Zn–Mg–Cu alloys with different chemical compositions, Mater. Sci. Eng. A, 639(2015), p. 245. doi: 10.1016/j.msea.2015.04.104
      [33]
      Z. Zhang, Y.L. Deng, L.Y. Ye, et al., Influence of aging treatments on the strength and localized corrosion resistance of aged Al–Zn–Mg–Cu alloy, J. Alloys Compd., 846(2020), art. No. 156223. doi: 10.1016/j.jallcom.2020.156223
      [34]
      G.N. Ma, D. Wang, Z.Y. Liu, et al., Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al–Zn–Mg–Cu composites, Acta Metall. Sin., 55(2019), No. 10, p. 1319.

    Catalog


    • /

      返回文章
      返回