留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  557
  • HTML全文浏览量:  175
  • PDF下载量:  34
  • 被引次数: 0
Yulin Gao, Min Zhang, Rui Wang, Xinxin Zhang, Zhunli Tan,  and Xiaoyu Chong, Effect of temperature and time on the precipitation of κ-carbides in Fe–28Mn–10Al–0.8C low-density steels: Aging mechanism and its impact on material properties, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2189-2198. https://doi.org/10.1007/s12613-024-2857-0
Cite this article as:
Yulin Gao, Min Zhang, Rui Wang, Xinxin Zhang, Zhunli Tan,  and Xiaoyu Chong, Effect of temperature and time on the precipitation of κ-carbides in Fe–28Mn–10Al–0.8C low-density steels: Aging mechanism and its impact on material properties, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2189-2198. https://doi.org/10.1007/s12613-024-2857-0
引用本文 PDF XML SpringerLink
研究论文

温度和时间对Fe–28Mn–10Al–0.8C低密度钢中κ-碳化物析出的影响:时效机理及其对材料性能的影响


  • 通讯作者:

    张敏    E-mail: zhangm@bjtu.edu.cn

文章亮点

  • (1) 在不同的时效温度和时间下,对Fe–28Mn–10Al–0.8C(wt%)奥氏体低密度钢中κ-碳化物的沉淀序列进行了深入的研究。
  • (2) 在时效过程中,κ-碳化物显著析出,主要沿着[111]κ方向生长;
  • (3) 在时效过程中,球形碳化物作为第二阶段沉淀的过渡阶段或不稳定阶段,逐渐溶解,保证了针状碳化物的逐渐生长和粗化;
  • (4) 位错强化和第二相强化是其主要的强化机制。
  • 本研究探讨了Fe–28Mn–10Al–0.8C(wt%)低密度钢时效过程中第二相κ-碳化物的演化机理及其对钢性能的影响。在低密度钢中,κ-碳化物主要在奥氏体中以纳米级颗粒的形式析出。然而,它们在铁素体中的析出尚未得到全面的探索,其时效过程中的第二相析出机制尚不清楚。本研究全面分析了κ-碳化物在不同时效温度和时间下的晶体学特征和形态演化,以及这些变化对材料显微硬度的影响。在不同的热处理条件下,晶粒内κ-碳化物表现出不同的形态和晶体学特征,如针状、球形和短棒状。在时效的初始阶段,针状的κ-碳化物为主要析出,并伴有一些球形碳化物。κ-碳化物随着时效时间的演唱而生长和变粗,球形碳化物显著减少,棒状碳化物变粗。维氏硬度试验表明,该材料的硬度受κ-碳化物的体积分数、形貌和尺寸的影响。在较高温度下的长期时效导致碳化物的尺寸和体积分数的增加,从而导致硬度的逐渐上升。在变形过程中,强化的主要机制是位错强化和第二相强化。基于这些发现,提出了提高材料强度的潜在策略。
  • Research Article

    Effect of temperature and time on the precipitation of κ-carbides in Fe–28Mn–10Al–0.8C low-density steels: Aging mechanism and its impact on material properties

    + Author Affiliations
    • In low-density steel, κ-carbides primarily precipitate in the form of nanoscale particles within austenite grains. However, their precipitation within ferrite matrix grains has not been comprehensively explored, and the second-phase evolution mechanism during aging remains unclear. In this study, the crystallographic characteristics and morphological evolution of κ-carbides in Fe–28Mn–10Al–0.8C (wt%) low-density steel at different aging temperatures and times and the impacts of these changes on the steels’ microhardness and properties were comprehensively analyzed. Under different heat treatment conditions, intragranular κ-carbides exhibited various morphological and crystallographic characteristics, such as acicular, spherical, and short rod-like shapes. At the initial stage of aging, acicular κ-carbides primarily precipitated, accompanied by a few spherical carbides. κ-Carbides grew and coarsened with aging time, the spherical carbides were considerably reduced, and rod-like carbides coarsened. Vickers hardness testing demonstrated that the material’s hardness was affected by the volume fraction, morphology, and size of κ-carbides. Extended aging at higher temperatures led to an increase in carbide size and volume fraction, resulting in a gradual rise in hardness. During deformation, the primary mechanisms for strengthening were dislocation strengthening and second-phase strengthening. Based on these findings, potential strategies for improving material strength are proposed.
    • loading
    • [1]
      H.T. Lu, D.Z. Li, S.Y. Li, and Y.A. Chen, Hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 734. doi: 10.1007/s12613-022-2531-3
      [2]
      L.Z. Xie, Z.G. Xu, Y.Z. Qi, J.R. Liang, P. He, Q. Shen, and C.B. Wang, Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 917. doi: 10.1007/s12613-022-2568-3
      [3]
      Z.Y. Huang, A.L. Hou, Y.S. Jiang, et al., Rietveld refinement, microstructure, mechanical properties and oxidation characteristics of Fe–28Mn–xAl–1C (x = 10 and 12 wt. %) low-density steels, J. Iron Steel Res. Int., 24(2017), No. 12, p. 1190. doi: 10.1016/S1006-706X(18)30017-7
      [4]
      L.L. Wei, G.H. Gao, J. Kim, R.D.K. Misra, C.G. Yang, and X.J. Jin, Ultrahigh strength-high ductility 1GPa low density austenitic steel with ordered precipitation strengthening phase and dynamic slip band refinement, Mater. Sci. Eng. A, 838(2022), art. No. 142829. doi: 10.1016/j.msea.2022.142829
      [5]
      D.G. Liu, H. Ding, D. Han, and M.H. Cai, Effect of grain interior and grain boundary κ-carbides on the strain hardening behavior of medium-Mn lightweight steels, Mater. Sci. Eng. A, 871(2023), art. No. 144861. doi: 10.1016/j.msea.2023.144861
      [6]
      P. Ren, X.P. Chen, L. Mei, Y.Y. Nie, W.Q. Cao, and Q. Liu, Intragranular brittle precipitates improve strain hardening capability of Fe–30Mn–11Al–1.2C low-density steel, Mater. Sci. Eng. A, 775(2020), art. No. 138984. doi: 10.1016/j.msea.2020.138984
      [7]
      S.P. Chen, R. Rana, A. Haldar, and R.K. Ray, Current state of Fe–Mn–Al–C low density steels, Prog. Mater. Sci., 89(2017), p. 345. doi: 10.1016/j.pmatsci.2017.05.002
      [8]
      Y. Zhang, Z.Z. Zhang, N.V. Medhekar, and L. Bourgeois, Vacancy-tuned precipitation pathways in Al–1.7Cu–0.025In–0.025Sb (at.%) alloy, Acta Mater., 141(2017), p. 341. doi: 10.1016/j.actamat.2017.09.025
      [9]
      J.E. Jin and Y.K. Lee, Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel, Acta Mater., 60(2012), No. 4, p. 1680. doi: 10.1016/j.actamat.2011.12.004
      [10]
      K.T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Lee, Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition, Mater. Sci. Eng. A, 527(2010), No. 16-17, p. 3651. doi: 10.1016/j.msea.2010.02.058
      [11]
      J.S. Jeong, W. Woo, K.H. Oh, S.K. Kwon, and Y.M. Koo, In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels, Acta Mater., 60(2012), No. 5, p. 2290. doi: 10.1016/j.actamat.2011.12.043
      [12]
      M.J. Yao, E. Welsch, D. Ponge, et al., Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel, Acta Mater., 140(2017), p. 258. doi: 10.1016/j.actamat.2017.08.049
      [13]
      A. Banis, A. Gomez, A. Dutta, I. Sabirov, and R.H. Petrov, The effect of nano-sized κ-carbides on the mechanical properties of an Fe–Mn–Al–C alloy, Mater. Charact., 205(2023), art. No. 113364. doi: 10.1016/j.matchar.2023.113364
      [14]
      P. Chen, Q.C. Zhang, F. Zhang, J.H. Du, F. Shi, and X.W. Li, Critical role of κ-carbides in the multi-stage work hardening process of a lightweight austenitic steel, Mater. Charact., 200(2023), art. No. 112853. doi: 10.1016/j.matchar.2023.112853
      [15]
      P. Dey, R. Nazarov, B. Dutta, et al. , Ab initio explanation of disorder and off-stoichiometry in Fe–Mn–Al–C κ carbides, Phys. Rev. B, 95(2017), No. 10, art. No. 104108. doi: 10.1103/PhysRevB.95.104108
      [16]
      C. Kim, H.U. Hong, J.H. Jang, et al., Reverse partitioning of Al from κ-carbide to the γ-matrix upon Ni addition and its strengthening effect in Fe–Mn–Al–C lightweight steel, Mater. Sci. Eng. A, 820(2021), art. No. 141563. doi: 10.1016/j.msea.2021.141563
      [17]
      K. Choi, C.H. Seo, H. Lee, et al., Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn–9Al–0.8C steel, Scr. Mater., 63(2010), No. 10, p. 1028. doi: 10.1016/j.scriptamat.2010.07.036
      [18]
      J. Wang, M.X. Yang, X.L. Wu, and F.P. Yuan, Achieving better synergy of strength and ductility by adjusting size and volume fraction of coherent κ’–carbides in a lightweight steel, Mater. Sci. Eng. A, 857(2022), art. No. 144085. doi: 10.1016/j.msea.2022.144085
      [19]
      I. Gutierrez-Urrutia and D. Raabe, Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels, Scripta Mater., 68(2013), No. 6, p. 343. doi: 10.1016/j.scriptamat.2012.08.038
      [20]
      C.L. Lin, C.G. Chao, H.Y. Bor, and T.F. Liu, Relationship between microstructures and tensile properties of an Fe–30Mn–8.5Al–2.0C alloy, Mater. Trans., 51(2010), No. 6, p. 1084. doi: 10.2320/matertrans.M2010013
      [21]
      J.L. Zhang, D. Raabe, and C.C. Tasan, Designing duplex, ultrafine-grained Fe–Mn–Al–C steels by tuning phase transformation and recrystallization kinetics, Acta Mater., 141(2017), . 374. doi: 10.1016/j.actamat.2017.09.026
      [22]
      H. Wang, C.Y. Wang, J.X. Liang, et al., Effect of alloying content on microstructure and mechanical properties of Fe–Mn–Al–C low-density steels, Mater. Sci. Eng. A, 886(2023), art. No. 145675. doi: 10.1016/j.msea.2023.145675
      [23]
      S.W. Park, J.Y. Park, K.M. Cho, et al., Effect of Mn and C on age hardening of Fe–Mn–Al–C lightweight steels, Met. Mater. Int., 25(2019), No. 3, p. 683. doi: 10.1007/s12540-018-00230-x
      [24]
      C.Y. Chao, C.N. Hwang, and T.F. Liu, Grain boundary precipitation in an Fe–7.8Al–31.7Mn–0.54C alloy, Scripta Metall. Mater., 28(1993), No. 1, p. 109. doi: 10.1016/0956-716X(93)90546-5
      [25]
      C.Y. Chao, C.N. Hwang, and T.F. Liu, Grain boundary precipitation behaviors in an Fe–9.8Al–28.6Mn–0.8Si–1.0C alloy, Scripta Mater., 34(1996), No. 1, p. 75. doi: 10.1016/1359-6462(95)00485-8
      [26]
      M.C. Li, H. Chang, P.W. Kao, and D. Gan, The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe–Mn–Al–C alloys, Mater. Chem. Phys., 59(1999), No. 1, . 96. doi: 10.1016/S0254-0584(99)00026-7
      [27]
      Y.F. Feng, R.B. Song, Z.Z. Pei, R.F. Song, and G.Y. Dou, Effect of aging isothermal time on the microstructure and room-temperature impact toughness of Fe–24.8Mn–7.3Al–1.2C austenitic steel with κ-carbides precipitation, Met. Mater. Int., 24(2018), No. 5, p. 1012. doi: 10.1007/s12540-018-0112-9
      [28]
      T.H. Zhang, H.Y. Wei, K. Zhang, et al., Effect of cooling medium on the κ carbide precipitation behavior, microstructure and impact properties of FeMnAlC low-density steel, Mater. Today Commun., 37(2023), art. No. 107084. doi: 10.1016/j.mtcomm.2023.107084
      [29]
      L. Xiao, Y.J. Zhou, C.H. Zhang, Y.Y. Wang, X.T. Deng, and Z.D. Wang, Improving impact toughness of Fe–20Mn–9Al–1.5C–2Ni–3Cr low-density steel by optimizing grain boundaries via multi-stage heat treatment without compromising high strength and ductility, J. Mater. Res. Technol., 29(2024), p. 2396. doi: 10.1016/j.jmrt.2024.01.272
      [30]
      J. Jeong, C.Y. Lee, I.J. Park, and Y.K. Lee, Isothermal precipitation behavior of κ-carbide in the Fe–9Mn–6Al–0.15C lightweight steel with a multiphase microstructure, J. Alloys Compd., 574(2013), p. 299. doi: 10.1016/j.jallcom.2013.05.138
      [31]
      W.C. Cheng, Phase transformations of an Fe–0.85 C–17.9 Mn–7.1 Al austenitic steel after quenching and annealing, JOM, 66(2014), No. 9, p. 1809. doi: 10.1007/s11837-014-1088-7
      [32]
      Y.F. An, X.P. Chen, P. Ren, and W.Q. Cao, Ultrastrong and ductile austenitic lightweight steel via ultra-fine grains and heterogeneous B2 precipitates, Mater. Sci. Eng. A, 860(2022), art. No. 144330. doi: 10.1016/j.msea.2022.144330
      [33]
      O.A. Zambrano, J. Valdés, L.A. Rodriguez, et al., Elucidating the role of κ-carbides in Fe–Mn–Al–C alloys on abrasion wear, Tribol. Int., 135(2019), p. 421. doi: 10.1016/j.triboint.2019.03.002
      [34]
      J.L. Zhang, Y.S. Jiang, W.S. Zheng, et al., Revisiting the formation mechanism of intragranular κ-carbide in austenite of a Fe–Mn–Al–Cr–C low-density steel, Scripta Mater., 199(2021), art. No. 113836. doi: 10.1016/j.scriptamat.2021.113836
      [35]
      N. Kamikawa, K. Sato, G. Miyamoto, et al., Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels, Acta Mater., 83(2015), p. 383. doi: 10.1016/j.actamat.2014.10.010
      [36]
      E. Welsch, D. Ponge, S.M. Hafez Haghighat, et al., Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel, Acta Mater., 116(2016), p. 188. doi: 10.1016/j.actamat.2016.06.037
      [37]
      D. Canadinc, H. Sehitoglu, and H.J. Maier, The role of dense dislocation walls on the deformation response of aluminum alloyed Hadfield steel polycrystals, Mater. Sci. Eng. A, 454-455(2007), p. 662. doi: 10.1016/j.msea.2006.11.122

    Catalog


    • /

      返回文章
      返回