留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 7
Jul.  2024

图(7)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1343
  • HTML全文浏览量:  347
  • PDF下载量:  57
  • 被引次数: 0
Aiduo Wu, Tianhao Wang, Long Zhang, Chen Chen, Qiaomin Li, Xuanhui Qu,  and Yongchang Liu, Recent advances and perspectives in MXene-based cathodes for aqueous zinc-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1752-1765. https://doi.org/10.1007/s12613-024-2859-y
Cite this article as:
Aiduo Wu, Tianhao Wang, Long Zhang, Chen Chen, Qiaomin Li, Xuanhui Qu,  and Yongchang Liu, Recent advances and perspectives in MXene-based cathodes for aqueous zinc-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1752-1765. https://doi.org/10.1007/s12613-024-2859-y
引用本文 PDF XML SpringerLink
特约综述

水系锌离子电池MXene基正极材料的研究进展和展望


    * 共同第一作者
  • 通讯作者:

    张隆    E-mail: zhanglong@ustb.edu.cn

    李侨敏    E-mail: qli091@ustb.edu.cn

    刘永畅    E-mail: liuyc@ustb.edu.cn

文章亮点

  • (1) 系统地总结了水系锌离子电池MXenes基正极材料的最新研究进展。
  • (2) 通过介绍MXenes材料的晶体结构、储锌机理,改性策略阐明了其构效关系。
  • (3) 提出了目前MXenes基水系储锌正极材料面临的挑战并对其未来发展作了展望。
  • 水系锌离子电池凭借其本征安全、成本低廉、环境友好和优异的电化学性能,在大规模储能领域展现出巨大应用潜力。然而,二价锌离子与宿主材料之间的强静电相互作用限制能够高效、快速、稳定储存锌离子的先进正极材料的开发。MXenes及其衍生物具有较大的层间距、良好的亲水性、出色的电子导电性和高氧化还原活性,被认为是水系锌离子电池正极材料的“明日之星”。本文全面综述了MXenes基材料作为水系锌离子电池正极的最新研究进展,包括其晶体结构、储锌机制、表面改性、层间工程和导电网络设计等方面,进而阐明其成分、结构与电化学性能之间的构效关系。此外,我们提出了目前MXenes基水系锌离子电池正极面临的挑战,例如迫切需要改进有毒的制备方法、探索潜在的新型MXene基正极材料以及抑制层状MXene在电化学循环过程中的再堆叠。最后,对未来发展高性能水系锌离子电池MXenes基正极材料的前景作出了展望。
  • Invited Review

    Recent advances and perspectives in MXene-based cathodes for aqueous zinc-ion batteries

    + Author Affiliations
    • Aqueous zinc-ion batteries (AZIBs) show great potential for applications in grid-scale energy storage, given their intrinsic safety, cost effectiveness, environmental friendliness, and impressive electrochemical performance. However, strong electrostatic interactions exist between zinc ions and host materials, and they hinder the development of advanced cathode materials for efficient, rapid, and stable Zn-ion storage. MXenes and their derivatives possess a large interlayer spacing, excellent hydrophilicity, outstanding electronic conductivity, and high redox activity. These materials are considered “rising star” cathode candidates for AZIBs. This comprehensive review discusses recent advances in MXenes as AZIB cathodes from the perspectives of crystal structure, Zn-storage mechanism, surface modification, interlayer engineering, and conductive network design to elucidate the correlations among their composition, structure, and electrochemical performance. This work also outlines the remaining challenges faced by MXenes for aqueous Zn-ion storage, such as the urgent need for improved toxic preparation methods, exploration of potential novel MXene cathodes, and suppression of layered MXene restacking upon cycling, and introduces the prospects of MXene-based cathode materials for high-performance AZIBs.
    • loading
    • [1]
      M. Song, H. Tan, D.L. Chao, and H.J. Fan, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1802564. doi: 10.1002/adfm.201802564
      [2]
      Y.L. Liang, H. Dong, D. Aurbach, and Y. Yao, Current status and future directions of multivalent metal-ion batteries, Nat. Energy, 5(2020), p. 646. doi: 10.1038/s41560-020-0655-0
      [3]
      X.Q. Zeng, M. Li, D. Abd El-Hady, et al., Commercialization of lithium battery technologies for electric vehicles, Adv. Energy Mater., 9(2019), No. 27, art. No. 1900161. doi: 10.1002/aenm.201900161
      [4]
      L.F. Wang, M.M. Geng, X.N. Ding, et al., Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
      [5]
      M. Yang, R.Y. Bi, J.Y. Wang, R.B. Yu, and D. Wang, Decoding lithium batteries through advanced in situ characterization techniques, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 965. doi: 10.1007/s12613-022-2461-0
      [6]
      Q.B. Zhang, Y.C. Liu, and X.B. Ji, Editorial for special issue on advanced materials for energy storage and conversion, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1545. doi: 10.1007/s12613-021-2354-7
      [7]
      N. Li, Y.R. Li, X.H. Zhu, C.X. Huang, J.J. Kai, and J. Fan, Theoretical investigation of the structure–property correlation of MXenes as anode materials for alkali metal ion batteries, J. Phys. Chem. C, 124(2020), No. 28, p. 14978. doi: 10.1021/acs.jpcc.0c02968
      [8]
      R.Y. Fang, C.W. Lu, A.Q. Chen, et al., 2D MXene-based energy storage materials: Interfacial structure design and functionalization, ChemSusChem, 13(2020), No. 6, p. 1409. doi: 10.1002/cssc.201902537
      [9]
      D. Yang, H.T. Tan, X.H. Rui, and Y. Yu, Electrode materials for rechargeable zinc-ion and zinc-air batteries: Current status and future perspectives, Electrochem. Energy Rev., 2(2019), No. 3, p. 395. doi: 10.1007/s41918-019-00035-5
      [10]
      X.B. Cheng, T.Z. Hou, R. Zhang, et al., Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Adv. Mater., 28(2016), No. 15, p. 2888. doi: 10.1002/adma.201506124
      [11]
      P.C. Ruan, S.Q. Liang, B.G. Lu, H.J. Fan, and J. Zhou, Design strategies for high-energy-density aqueous zinc batteries, Angew. Chem. Int. Ed., 61(2022), No. 17, art. No. e202200598. doi: 10.1002/anie.202200598
      [12]
      H.C. Li, Z.W. Wei, Y. Xia, J.S. Han, and X. Li, Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 621. doi: 10.1007/s12613-022-2525-1
      [13]
      L.Y. Xiong, H. Fu, W.W. Han, et al., Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1053. doi: 10.1007/s12613-022-2454-z
      [14]
      R. Zhao, J.J. Yang, X.M. Han, et al., Stabilizing Zn metal anodes via cation/anion regulation toward high energy density Zn-ion batteries, Adv. Energy Mater., 13(2023), No. 8, art. No. 2203542. doi: 10.1002/aenm.202203542
      [15]
      X.S. Xie, J.J. Li, Z.Y. Xing, B.G. Lu, S.Q. Liang, and J. Zhou, Biocompatible zinc battery with programmable electro-cross-linked electrolyte, Natl. Sci. Rev., 10(2023), No. 3, art. No. nwac281. doi: 10.1093/nsr/nwac281
      [16]
      X. Wang, Z.C.Y. Zhang, B.J. Xi, et al., Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries, ACS Nano, 15(2021), No. 6, p. 9244. doi: 10.1021/acsnano.1c01389
      [17]
      M.Y. Chuai, J.L. Yang, M.M. Wang, et al, High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2, eScience, 1(2021), No. 2, p. 178. doi: 10.1016/j.esci.2021.11.002
      [18]
      M.J. Shi, H.T. Zhu, C. Chen, J.T. Jiang, L.P. Zhao, and C. Yan, Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 25. doi: 10.1007/s12613-022-2441-4
      [19]
      J.H. Huang, Z. Wang, M.Y. Hou, et al., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery, Nat. Commun., 9(2018), No. 1, art. No. 2906. doi: 10.1038/s41467-018-04949-4
      [20]
      D.L. Chao, C. Ye, F.X. Xie, et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density, Adv. Mater., 32(2020), No. 25, art. No. 2001894. doi: 10.1002/adma.202001894
      [21]
      A.Q. Zhang, R. Zhao, Y.H. Wang, J.J. Yang, C. Wu, and Y. Bai, Regulating the electronic structure of manganese-based materials to optimize the performance of zinc-ion batteries, Energy Environ. Sci., 16(2023), No. 8, p. 3240. doi: 10.1039/D3EE01344H
      [22]
      Y. Tan, F.Q. An, Y.C. Liu, et al., Reaction kinetics in rechargeable zinc-ion batteries, J. Power Sources, 492(2021), art. No. 229655. doi: 10.1016/j.jpowsour.2021.229655
      [23]
      K.Y. Zhu, T. Wu, and K. Huang, A high capacity bilayer cathode for aqueous Zn-ion batteries, ACS Nano, 13(2019), No. 12, p. 14447. doi: 10.1021/acsnano.9b08039
      [24]
      Y.X. Zhao, S.Q. Liang, X.D. Shi, et al., Synergetic effect of alkali-site substitution and oxygen vacancy boosting vanadate cathode for super-stable potassium and zinc storage, Adv. Funct. Mater., 32(2022), No. 32, art. No. 2203819. doi: 10.1002/adfm.202203819
      [25]
      L.T. Ma, S.M. Chen, C.B. Long, et al., Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction, Adv. Energy Mater., 9(2019), No. 45, art. No. 1902446. doi: 10.1002/aenm.201902446
      [26]
      Z.Y. Wu, F. Ye, Q. Liu, et al., Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage, Adv. Energy Mater., 12(2022), No. 23, art. No. 2200654. doi: 10.1002/aenm.202200654
      [27]
      C.L. Tan and H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites, Chem. Soc. Rev., 44(2015), No. 9, p. 2713. doi: 10.1039/C4CS00182F
      [28]
      D.B. Xiong, X.F. Li, Z.M. Bai, and S.G. Lu, Recent advances in layered Ti3C2T x MXene for electrochemical energy storage, Small, 14(2018), No. 17, art. No. 1703419. doi: 10.1002/smll.201703419
      [29]
      Y.T. Liu, X.D. Zhu, and L. Pan, Hybrid architectures based on 2D MXenes and low-dimensional inorganic nanostructures: Methods, synergies, and energy-related applications, Small, 14(2018), No. 51, art. No. 1803632. doi: 10.1002/smll.201803632
      [30]
      S.W. Li, Y.C. Liu, X.D. Zhao, et al., Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries, Adv. Mater., 33(2021), No. 12, art. No. 2007480. doi: 10.1002/adma.202007480
      [31]
      X.F. Chen, Y.Z. Zhu, M. Zhang, et al., N-Butyllithium-treated Ti3C2T x MXene with excellent pseudocapacitor performance, ACS Nano, 13(2019), No. 8, p. 9449. doi: 10.1021/acsnano.9b04301
      [32]
      Z.Y. Li, L.B. Wang, D.D. Sun, Y.D. Zhang, B.Z. Liu, Q.K. Hu, and A.G. Zhou, Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2, Mater. Sci. Eng. B, 191(2015), p. 33. doi: 10.1016/j.mseb.2014.10.009
      [33]
      M. Naguib, M. Kurtoglu, V. Presser, et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23(2011), No. 37, p. 4248. doi: 10.1002/adma.201102306
      [34]
      C.D. Wang, S.Q. Wei, S.M. Chen, D.F. Cao, and L. Song, Delaminating vanadium carbides for zinc-ion storage: Hydrate precipitation and H+/Zn2+ co-action mechanism, Small Methods, 3(2019), No. 12, art. No. 1900495. doi: 10.1002/smtd.201900495
      [35]
      Y. Liu, S. Wang, Z.W. Huang, et al., Recent advances and promise of zinc-ion energy storage devices based on MXenes, J. Mater. Sci., 57(2022), No. 29, p. 13817. doi: 10.1007/s10853-022-07448-6
      [36]
      M.S. Javed, A. Mateen, S. Ali, X. Zhang, et al., The emergence of 2D MXenes based Zn-ion batteries: Recent development and prospects, Small, 18(2022), No. 26, art. No. 2201989. doi: 10.1002/smll.202201989
      [37]
      J. Chen, Y.B. Ding, D. Yan, J.J. Huang, and S.L. Peng, Synthesis of MXene and its application for zinc-ion storage, SusMat, 2(2022), No. 3, p. 293. doi: 10.1002/sus2.57
      [38]
      M. Narayanasamy, B. Kirubasankar, M.J. Shi, et al., Morphology restrained growth of V2O5 by the oxidation of V–MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries, Chem. Commun., 56(2020), No. 47, p. 6412. doi: 10.1039/D0CC01802C
      [39]
      D.W. Sha, C.J. Lu, W. He, et al., Surface selenization strategy for V2CT x MXene toward superior Zn-ion storage, ACS Nano, 16(2022), No. 2, p. 2711. doi: 10.1021/acsnano.1c09639
      [40]
      X.L. Li, M. Li, Q. Yang, et al., Vertically aligned Sn4+ preintercalated Ti2CTx MXene sphere with enhanced Zn ion transportation and superior cycle lifespan, Adv. Energy Mater., 10(2020), No. 35, art. No. 2001394. doi: 10.1002/aenm.202001394
      [41]
      X.D. Zhu, Z.Y. Cao, W.J. Wang, et al., Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CT x MXene, ACS Nano, 15(2021), No. 2, p. 2971. doi: 10.1021/acsnano.0c09205
      [42]
      X.D. Zhu, W.J. Wang, Z.Y. Cao, et al., Zn2+-intercalated V2O5·nH2O derived from V2CT x MXene for hyper-stable zinc-ion storage, J. Mater. Chem. A, 9(2021), No. 33, p. 17994. doi: 10.1039/D1TA05526G
      [43]
      S.J. Luo, L.Y. Xie, F. Han, et al., Nanoscale parallel circuitry based on interpenetrating conductive assembly for flexible and high-power zinc ion battery, Adv. Funct. Mater., 29(2019), No. 28, art. No. 1901336. doi: 10.1002/adfm.201901336
      [44]
      M.J. Shi, B. Wang, Y. Shen, et al., 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries, Chem. Eng. J., 399(2020), art. No. 125627. doi: 10.1016/j.cej.2020.125627
      [45]
      C.Z. Liu, W.W. Xu, C.T. Mei, M.C. Li, X.W. Xu, and Q.L. Wu, Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan, Chem. Eng. J., 405(2021), art. No. 126737. doi: 10.1016/j.cej.2020.126737
      [46]
      M.W. Barsoum, The M N+1AX N phases: A new class of solids Thermodynamically stable nanolaminates, Prog. Solid State Chem., 28(2000), No. 1-4, . 201. doi: 10.1016/S0079-6786(00)00006-6
      [47]
      M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials, Adv. Mater., 26(2014), No. 7, p. 992. doi: 10.1002/adma.201304138
      [48]
      H.X. Chen, D.L. Yang, Q.H. Zhang, et al., A series of MAX phases with MA-triangular-prism bilayers and elastic properties, Angew. Chem. Int. Ed., 58(2019), No. 14, p. 4576. doi: 10.1002/anie.201814128
      [49]
      B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2(2017), No. 2, art. No. 16098. doi: 10.1038/natrevmats.2016.98
      [50]
      R. Venkatkarthick, N. Rodthongkum, X.Y. Zhang, et al., Vanadium-based oxide on two-dimensional vanadium carbide MXene (V2O x@V2CT x) as cathode for rechargeable aqueous zinc-ion batteries, ACS Appl. Energy Mater., 3(2020), No. 5, p. 4677. doi: 10.1021/acsaem.0c00309
      [51]
      M. Li, X.L. Li, G.F. Qin, et al., Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries, ACS Nano, 15(2021), No. 1, p. 1077. doi: 10.1021/acsnano.0c07972
      [52]
      X.L. Li, M. Li, Z.D. Huang, et al., Activating the I0/I+ redox couple in an aqueous I2–Zn battery to achieve a high voltage plateau, Energy Environ. Sci., 14(2021), No. 1, p. 407. doi: 10.1039/D0EE03086D
      [53]
      C. Chen, T.H. Wang, X.D. Zhao, et al., Customizing hydrophilic terminations for V2CT x MXene toward superior hybrid-ion storage in aqueous zinc batteries, Adv. Funct. Mater., 34(2024), No. 9, art. No. 2308508. doi: 10.1002/adfm.202308508
      [54]
      P. Srivastava, A. Mishra, H. Mizuseki, K.R. Lee, and A.K. Singh, Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene, ACS Appl. Mater. Interfaces, 8(2016), No. 36, p. 24256. doi: 10.1021/acsami.6b08413
      [55]
      X.F. Wang, X. Shen, Y.R. Gao, Z.X. Wang, R.C. Yu, and L.Q. Chen, Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X, J. Am. Chem. Soc., 137(2015), No. 7, p. 2715. doi: 10.1021/ja512820k
      [56]
      C. Xu, L.B. Wang, Z.B. Liu, et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals, Nat. Mater., 14(2015), No. 11, p. 1135. doi: 10.1038/nmat4374
      [57]
      Y. Wei, P. Zhang, R.A. Soomro, Q.Z. Zhu, and B. Xu, Advances in the synthesis of 2D MXenes, Adv. Mater., 33(2021), No. 39, art. No. 2103148. doi: 10.1002/adma.202103148
      [58]
      C.D. Wang, S.M. Chen, and L. Song, Tuning 2D MXenes by surface controlling and interlayer engineering: Methods, properties, and synchrotron radiation characterizations, Adv. Funct. Mater., 30(2020), No. 47, art. No. 2000869. doi: 10.1002/adfm.202000869
      [59]
      F. Malchik, N. Shpigel, M.D. Levi, et al., MXene conductive binder for improving performance of sodium-ion anodes in water-in-salt electrolyte, Nano Energy, 79(2021), art. No. 105433. doi: 10.1016/j.nanoen.2020.105433
      [60]
      Y. Gogotsi and Q. Huang, MXenes: Two-dimensional building blocks for future materials and devices, ACS Nano, 15(2021), No. 4, p. 5775. doi: 10.1021/acsnano.1c03161
      [61]
      A. Sarycheva, T. Makaryan, K. Maleski, et al., Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate, J. Phys. Chem. C, 121(2017), No. 36, p. 19983. doi: 10.1021/acs.jpcc.7b08180
      [62]
      E. Pomerantseva and Y. Gogotsi, Two-dimensional heterostructures for energy storage, Nat. Energy, 2(2017), No. 7, art. No. 17089. doi: 10.1038/nenergy.2017.89
      [63]
      T.F. Li, L.L. Yao, Q.L. Liu, et al., Fluorine-free synthesis of high-purity Ti3C2T x (T = OH, O) via alkali treatment, Angew. Chem. Int. Ed., 57(2018), No. 21, p. 6115. doi: 10.1002/anie.201800887
      [64]
      M.K. Han, K. Maleski, C.E. Shuck, et al., Tailoring electronic and optical properties of MXenes through forming solid solutions, J. Am. Chem. Soc., 142(2020), No. 45, p. 19110. doi: 10.1021/jacs.0c07395
      [65]
      T. Schultz, N.C. Frey, K. Hantanasirisakul, et al., Surface termination dependent work function and electronic properties of Ti3C2T x MXene, Chem. Mater., 31(2019), No. 17, p. 6590. doi: 10.1021/acs.chemmater.9b00414
      [66]
      C.F.J. Zhang, Interfacial assembly of two-dimensional MXenes, J. Energy Chem., 60(2021), p. 417. doi: 10.1016/j.jechem.2020.12.036
      [67]
      P.C. Lian, Y.F. Dong, Z.S. Wu, et al., Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries, Nano Energy, 40(2017), p. 1. doi: 10.1016/j.nanoen.2017.08.002
      [68]
      R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, and H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CT x MXene electrodes for supercapacitor applications, Chem. Mater., 27(2015), No. 15, p. 5314. doi: 10.1021/acs.chemmater.5b01623
      [69]
      X.L. Li, M. Li, Q. Yang, et al. , In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery, Adv. Energy Mater., 10(2020), No. 36, art. No. 2001791. doi: 10.1002/aenm.202001791
      [70]
      X.L. Li, M. Li, Q. Yang, et al., Phase transition induced unusual electrochemical performance of V2CT X MXene for aqueous zinc hybrid-ion battery, ACS Nano, 14(2020), No. 1, p. 541. doi: 10.1021/acsnano.9b06866
      [71]
      Y. Tian, Y.L. An, H. Wei, et al., Micron-sized nanoporous vanadium pentoxide arrays for high-performance gel zinc-ion batteries and potassium batteries, Chem. Mater., 32(2020), No. 9, p. 4054. doi: 10.1021/acs.chemmater.0c00787
      [72]
      Y. Liu, Y. Jiang, Z. Hu, et al. , In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries, Adv. Funct. Mater., 31(2021), No. 8, art. No. 2008033. doi: 10.1002/adfm.202008033
      [73]
      J. Chen, B.Q. Xiao, C.F. Hu, et al., Construction strategy of VO2@V2C 1D/2D heterostructure and improvement of zinc-ion diffusion ability in VO2 (B), ACS Appl. Mater. Interfaces, 14(2022), No. 25, p. 28760. doi: 10.1021/acsami.2c03646
      [74]
      Q. Gao, W.W. Sun, P. Ilani-Kashkouli, et al., Tracking ion intercalation into layered Ti3C2 MXene films across length scales, Energy Environ. Sci., 13(2020), No. 8, p. 2549. doi: 10.1039/D0EE01580F
      [75]
      Z.L. Li, Y.F. Wei, Y.Y. Liu, S. Yan, and M.Y. Wu, Dual strategies of metal preintercalation and in situ electrochemical oxidization operating on MXene for enhancement of ion/electron transfer and zinc-ion storage capacity in aqueous zinc-ion batteries, Adv. Sci., 10(2023), No. 8, art. No. e2206860. doi: 10.1002/advs.202206860
      [76]
      O. Mashtalir, M. Naguib, V.N. Mochalin, et al., Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun., 4(2013), art. No. 1716. doi: 10.1038/ncomms2664
      [77]
      H.B. Wang, J.F. Zhang, Y.P. Wu, H.J. Huang, and Q.G. Jiang, Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance, J. Phys. Chem. Solids, 115(2018), p. 172. doi: 10.1016/j.jpcs.2017.12.039
      [78]
      F.F. Liu, Y.C. Liu, X.D. Zhao, K.Y. Liu, H.Q. Yin, and L.Z. Fan, Prelithiated V2C MXene: A high-performance electrode for hybrid magnesium/lithium-ion batteries by ion cointercalation, Small, 16(2020), No. 8, art. No. 1906076. doi: 10.1002/smll.201906076
      [79]
      R.Z. Zhao, H.X. Di, C.X. Wang, et al., Encapsulating ultrafine Sb nanoparticles in Na+ pre-intercalated 3D porous Ti3C2T x MXene nanostructures for enhanced potassium storage performance, ACS Nano, 14(2020), No. 10, p. 13938. doi: 10.1021/acsnano.0c06360
      [80]
      M. Lu, W.J. Han, H.J. Li, et al., Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity, Energy Storage Mater., 16(2019), p. 163. doi: 10.1016/j.ensm.2018.04.029
      [81]
      M.Q. Zhao, C.E. Ren, M. Alhabeb, B. Anasori, M.W. Barsoum, and Y. Gogotsi, Magnesium-ion storage capability of MXenes, ACS Appl. Energy Mater., 2(2019), No. 2, p. 1572. doi: 10.1021/acsaem.8b02253
      [82]
      J. Li, X.T. Yuan, C. Lin, et al., Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification, Adv. Energy Mater., 7(2017), No. 15, art. No. 1602725. doi: 10.1002/aenm.201602725
      [83]
      P.A. Maughan, N. Tapia-Ruiz, and N. Bimbo, In-situ pillared MXene as a viable zinc-ion hybrid capacitor, Electrochim. Acta, 341(2020), art. No. 136061. doi: 10.1016/j.electacta.2020.136061
      [84]
      M.J. Shi, B. Wang, C. Chen, J.W. Lang, C. Yan, and X.B. Yan, 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries, J. Mater. Chem. A, 8(2020), No. 46, p. 24635. doi: 10.1039/D0TA09085A
      [85]
      X.D. Zhu, Z.Y. Cao, X.L. Li, et al., Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-ion batteries, Energy Storage Mater., 45(2022), p. 568. doi: 10.1016/j.ensm.2021.12.002
      [86]
      Q. Wang, S.L. Wang, X.H. Guo, et al., MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life, Adv. Electron. Mater., 5(2019), No. 12, art. No. 1900537. doi: 10.1002/aelm.201900537
      [87]
      X.L. Li, M. Li, W.Y. Xu, et al., V2CT x MXene sphere for aqueous ion storage, Energy Mater. Adv., 4(2023), art. No. 0066. doi: 10.34133/energymatadv.0066
      [88]
      J.J. Shi, Y.X. Hou, Z.Y. Liu, et al., The high-performance MoO3− x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering, Nano Energy, 91(2022), art. No. 106651. doi: 10.1016/j.nanoen.2021.106651
      [89]
      W.Y. Du, L. Miao, Z.Y. Song, et al., Kinetics-driven design of 3D VN/MXene composite structure for superior zinc storage and charge transfer, J. Power Sources, 536(2022), art. No. 231512. doi: 10.1016/j.jpowsour.2022.231512

    Catalog


    • /

      返回文章
      返回