Cite this article as: |
Aiduo Wu, Tianhao Wang, Long Zhang, Chen Chen, Qiaomin Li, Xuanhui Qu, and Yongchang Liu, Recent advances and perspectives in MXene-based cathodes for aqueous zinc-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1752-1765. https://doi.org/10.1007/s12613-024-2859-y |
张隆 E-mail: zhanglong@ustb.edu.cn
李侨敏 E-mail: qli091@ustb.edu.cn
刘永畅 E-mail: liuyc@ustb.edu.cn
[1] |
M. Song, H. Tan, D.L. Chao, and H.J. Fan, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1802564. doi: 10.1002/adfm.201802564
|
[2] |
Y.L. Liang, H. Dong, D. Aurbach, and Y. Yao, Current status and future directions of multivalent metal-ion batteries, Nat. Energy, 5(2020), p. 646. doi: 10.1038/s41560-020-0655-0
|
[3] |
X.Q. Zeng, M. Li, D. Abd El-Hady, et al., Commercialization of lithium battery technologies for electric vehicles, Adv. Energy Mater., 9(2019), No. 27, art. No. 1900161. doi: 10.1002/aenm.201900161
|
[4] |
L.F. Wang, M.M. Geng, X.N. Ding, et al., Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
|
[5] |
M. Yang, R.Y. Bi, J.Y. Wang, R.B. Yu, and D. Wang, Decoding lithium batteries through advanced in situ characterization techniques, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 965. doi: 10.1007/s12613-022-2461-0
|
[6] |
Q.B. Zhang, Y.C. Liu, and X.B. Ji, Editorial for special issue on advanced materials for energy storage and conversion, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1545. doi: 10.1007/s12613-021-2354-7
|
[7] |
N. Li, Y.R. Li, X.H. Zhu, C.X. Huang, J.J. Kai, and J. Fan, Theoretical investigation of the structure–property correlation of MXenes as anode materials for alkali metal ion batteries, J. Phys. Chem. C, 124(2020), No. 28, p. 14978. doi: 10.1021/acs.jpcc.0c02968
|
[8] |
R.Y. Fang, C.W. Lu, A.Q. Chen, et al., 2D MXene-based energy storage materials: Interfacial structure design and functionalization, ChemSusChem, 13(2020), No. 6, p. 1409. doi: 10.1002/cssc.201902537
|
[9] |
D. Yang, H.T. Tan, X.H. Rui, and Y. Yu, Electrode materials for rechargeable zinc-ion and zinc-air batteries: Current status and future perspectives, Electrochem. Energy Rev., 2(2019), No. 3, p. 395. doi: 10.1007/s41918-019-00035-5
|
[10] |
X.B. Cheng, T.Z. Hou, R. Zhang, et al., Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Adv. Mater., 28(2016), No. 15, p. 2888. doi: 10.1002/adma.201506124
|
[11] |
P.C. Ruan, S.Q. Liang, B.G. Lu, H.J. Fan, and J. Zhou, Design strategies for high-energy-density aqueous zinc batteries, Angew. Chem. Int. Ed., 61(2022), No. 17, art. No. e202200598. doi: 10.1002/anie.202200598
|
[12] |
H.C. Li, Z.W. Wei, Y. Xia, J.S. Han, and X. Li, Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 621. doi: 10.1007/s12613-022-2525-1
|
[13] |
L.Y. Xiong, H. Fu, W.W. Han, et al., Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1053. doi: 10.1007/s12613-022-2454-z
|
[14] |
R. Zhao, J.J. Yang, X.M. Han, et al., Stabilizing Zn metal anodes via cation/anion regulation toward high energy density Zn-ion batteries, Adv. Energy Mater., 13(2023), No. 8, art. No. 2203542. doi: 10.1002/aenm.202203542
|
[15] |
X.S. Xie, J.J. Li, Z.Y. Xing, B.G. Lu, S.Q. Liang, and J. Zhou, Biocompatible zinc battery with programmable electro-cross-linked electrolyte, Natl. Sci. Rev., 10(2023), No. 3, art. No. nwac281. doi: 10.1093/nsr/nwac281
|
[16] |
X. Wang, Z.C.Y. Zhang, B.J. Xi, et al., Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries, ACS Nano, 15(2021), No. 6, p. 9244. doi: 10.1021/acsnano.1c01389
|
[17] |
M.Y. Chuai, J.L. Yang, M.M. Wang, et al, High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2, eScience, 1(2021), No. 2, p. 178. doi: 10.1016/j.esci.2021.11.002
|
[18] |
M.J. Shi, H.T. Zhu, C. Chen, J.T. Jiang, L.P. Zhao, and C. Yan, Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 25. doi: 10.1007/s12613-022-2441-4
|
[19] |
J.H. Huang, Z. Wang, M.Y. Hou, et al., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery, Nat. Commun., 9(2018), No. 1, art. No. 2906. doi: 10.1038/s41467-018-04949-4
|
[20] |
D.L. Chao, C. Ye, F.X. Xie, et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density, Adv. Mater., 32(2020), No. 25, art. No. 2001894. doi: 10.1002/adma.202001894
|
[21] |
A.Q. Zhang, R. Zhao, Y.H. Wang, J.J. Yang, C. Wu, and Y. Bai, Regulating the electronic structure of manganese-based materials to optimize the performance of zinc-ion batteries, Energy Environ. Sci., 16(2023), No. 8, p. 3240. doi: 10.1039/D3EE01344H
|
[22] |
Y. Tan, F.Q. An, Y.C. Liu, et al., Reaction kinetics in rechargeable zinc-ion batteries, J. Power Sources, 492(2021), art. No. 229655. doi: 10.1016/j.jpowsour.2021.229655
|
[23] |
K.Y. Zhu, T. Wu, and K. Huang, A high capacity bilayer cathode for aqueous Zn-ion batteries, ACS Nano, 13(2019), No. 12, p. 14447. doi: 10.1021/acsnano.9b08039
|
[24] |
Y.X. Zhao, S.Q. Liang, X.D. Shi, et al., Synergetic effect of alkali-site substitution and oxygen vacancy boosting vanadate cathode for super-stable potassium and zinc storage, Adv. Funct. Mater., 32(2022), No. 32, art. No. 2203819. doi: 10.1002/adfm.202203819
|
[25] |
L.T. Ma, S.M. Chen, C.B. Long, et al., Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction, Adv. Energy Mater., 9(2019), No. 45, art. No. 1902446. doi: 10.1002/aenm.201902446
|
[26] |
Z.Y. Wu, F. Ye, Q. Liu, et al., Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage, Adv. Energy Mater., 12(2022), No. 23, art. No. 2200654. doi: 10.1002/aenm.202200654
|
[27] |
C.L. Tan and H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites, Chem. Soc. Rev., 44(2015), No. 9, p. 2713. doi: 10.1039/C4CS00182F
|
[28] |
D.B. Xiong, X.F. Li, Z.M. Bai, and S.G. Lu, Recent advances in layered Ti3C2T x MXene for electrochemical energy storage, Small, 14(2018), No. 17, art. No. 1703419. doi: 10.1002/smll.201703419
|
[29] |
Y.T. Liu, X.D. Zhu, and L. Pan, Hybrid architectures based on 2D MXenes and low-dimensional inorganic nanostructures: Methods, synergies, and energy-related applications, Small, 14(2018), No. 51, art. No. 1803632. doi: 10.1002/smll.201803632
|
[30] |
S.W. Li, Y.C. Liu, X.D. Zhao, et al., Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries, Adv. Mater., 33(2021), No. 12, art. No. 2007480. doi: 10.1002/adma.202007480
|
[31] |
X.F. Chen, Y.Z. Zhu, M. Zhang, et al., N-Butyllithium-treated Ti3C2T x MXene with excellent pseudocapacitor performance, ACS Nano, 13(2019), No. 8, p. 9449. doi: 10.1021/acsnano.9b04301
|
[32] |
Z.Y. Li, L.B. Wang, D.D. Sun, Y.D. Zhang, B.Z. Liu, Q.K. Hu, and A.G. Zhou, Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2, Mater. Sci. Eng. B, 191(2015), p. 33. doi: 10.1016/j.mseb.2014.10.009
|
[33] |
M. Naguib, M. Kurtoglu, V. Presser, et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23(2011), No. 37, p. 4248. doi: 10.1002/adma.201102306
|
[34] |
C.D. Wang, S.Q. Wei, S.M. Chen, D.F. Cao, and L. Song, Delaminating vanadium carbides for zinc-ion storage: Hydrate precipitation and H+/Zn2+ co-action mechanism, Small Methods, 3(2019), No. 12, art. No. 1900495. doi: 10.1002/smtd.201900495
|
[35] |
Y. Liu, S. Wang, Z.W. Huang, et al., Recent advances and promise of zinc-ion energy storage devices based on MXenes, J. Mater. Sci., 57(2022), No. 29, p. 13817. doi: 10.1007/s10853-022-07448-6
|
[36] |
M.S. Javed, A. Mateen, S. Ali, X. Zhang, et al., The emergence of 2D MXenes based Zn-ion batteries: Recent development and prospects, Small, 18(2022), No. 26, art. No. 2201989. doi: 10.1002/smll.202201989
|
[37] |
J. Chen, Y.B. Ding, D. Yan, J.J. Huang, and S.L. Peng, Synthesis of MXene and its application for zinc-ion storage, SusMat, 2(2022), No. 3, p. 293. doi: 10.1002/sus2.57
|
[38] |
M. Narayanasamy, B. Kirubasankar, M.J. Shi, et al., Morphology restrained growth of V2O5 by the oxidation of V–MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries, Chem. Commun., 56(2020), No. 47, p. 6412. doi: 10.1039/D0CC01802C
|
[39] |
D.W. Sha, C.J. Lu, W. He, et al., Surface selenization strategy for V2CT x MXene toward superior Zn-ion storage, ACS Nano, 16(2022), No. 2, p. 2711. doi: 10.1021/acsnano.1c09639
|
[40] |
X.L. Li, M. Li, Q. Yang, et al., Vertically aligned Sn4+ preintercalated Ti2CTx MXene sphere with enhanced Zn ion transportation and superior cycle lifespan, Adv. Energy Mater., 10(2020), No. 35, art. No. 2001394. doi: 10.1002/aenm.202001394
|
[41] |
X.D. Zhu, Z.Y. Cao, W.J. Wang, et al., Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CT x MXene, ACS Nano, 15(2021), No. 2, p. 2971. doi: 10.1021/acsnano.0c09205
|
[42] |
X.D. Zhu, W.J. Wang, Z.Y. Cao, et al., Zn2+-intercalated V2O5·nH2O derived from V2CT x MXene for hyper-stable zinc-ion storage, J. Mater. Chem. A, 9(2021), No. 33, p. 17994. doi: 10.1039/D1TA05526G
|
[43] |
S.J. Luo, L.Y. Xie, F. Han, et al., Nanoscale parallel circuitry based on interpenetrating conductive assembly for flexible and high-power zinc ion battery, Adv. Funct. Mater., 29(2019), No. 28, art. No. 1901336. doi: 10.1002/adfm.201901336
|
[44] |
M.J. Shi, B. Wang, Y. Shen, et al., 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries, Chem. Eng. J., 399(2020), art. No. 125627. doi: 10.1016/j.cej.2020.125627
|
[45] |
C.Z. Liu, W.W. Xu, C.T. Mei, M.C. Li, X.W. Xu, and Q.L. Wu, Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan, Chem. Eng. J., 405(2021), art. No. 126737. doi: 10.1016/j.cej.2020.126737
|
[46] |
M.W. Barsoum, The M N+1AX N phases: A new class of solids Thermodynamically stable nanolaminates, Prog. Solid State Chem., 28(2000), No. 1-4, . 201. doi: 10.1016/S0079-6786(00)00006-6
|
[47] |
M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials, Adv. Mater., 26(2014), No. 7, p. 992. doi: 10.1002/adma.201304138
|
[48] |
H.X. Chen, D.L. Yang, Q.H. Zhang, et al., A series of MAX phases with MA-triangular-prism bilayers and elastic properties, Angew. Chem. Int. Ed., 58(2019), No. 14, p. 4576. doi: 10.1002/anie.201814128
|
[49] |
B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2(2017), No. 2, art. No. 16098. doi: 10.1038/natrevmats.2016.98
|
[50] |
R. Venkatkarthick, N. Rodthongkum, X.Y. Zhang, et al., Vanadium-based oxide on two-dimensional vanadium carbide MXene (V2O x@V2CT x) as cathode for rechargeable aqueous zinc-ion batteries, ACS Appl. Energy Mater., 3(2020), No. 5, p. 4677. doi: 10.1021/acsaem.0c00309
|
[51] |
M. Li, X.L. Li, G.F. Qin, et al., Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries, ACS Nano, 15(2021), No. 1, p. 1077. doi: 10.1021/acsnano.0c07972
|
[52] |
X.L. Li, M. Li, Z.D. Huang, et al., Activating the I0/I+ redox couple in an aqueous I2–Zn battery to achieve a high voltage plateau, Energy Environ. Sci., 14(2021), No. 1, p. 407. doi: 10.1039/D0EE03086D
|
[53] |
C. Chen, T.H. Wang, X.D. Zhao, et al., Customizing hydrophilic terminations for V2CT x MXene toward superior hybrid-ion storage in aqueous zinc batteries, Adv. Funct. Mater., 34(2024), No. 9, art. No. 2308508. doi: 10.1002/adfm.202308508
|
[54] |
P. Srivastava, A. Mishra, H. Mizuseki, K.R. Lee, and A.K. Singh, Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene, ACS Appl. Mater. Interfaces, 8(2016), No. 36, p. 24256. doi: 10.1021/acsami.6b08413
|
[55] |
X.F. Wang, X. Shen, Y.R. Gao, Z.X. Wang, R.C. Yu, and L.Q. Chen, Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X, J. Am. Chem. Soc., 137(2015), No. 7, p. 2715. doi: 10.1021/ja512820k
|
[56] |
C. Xu, L.B. Wang, Z.B. Liu, et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals, Nat. Mater., 14(2015), No. 11, p. 1135. doi: 10.1038/nmat4374
|
[57] |
Y. Wei, P. Zhang, R.A. Soomro, Q.Z. Zhu, and B. Xu, Advances in the synthesis of 2D MXenes, Adv. Mater., 33(2021), No. 39, art. No. 2103148. doi: 10.1002/adma.202103148
|
[58] |
C.D. Wang, S.M. Chen, and L. Song, Tuning 2D MXenes by surface controlling and interlayer engineering: Methods, properties, and synchrotron radiation characterizations, Adv. Funct. Mater., 30(2020), No. 47, art. No. 2000869. doi: 10.1002/adfm.202000869
|
[59] |
F. Malchik, N. Shpigel, M.D. Levi, et al., MXene conductive binder for improving performance of sodium-ion anodes in water-in-salt electrolyte, Nano Energy, 79(2021), art. No. 105433. doi: 10.1016/j.nanoen.2020.105433
|
[60] |
Y. Gogotsi and Q. Huang, MXenes: Two-dimensional building blocks for future materials and devices, ACS Nano, 15(2021), No. 4, p. 5775. doi: 10.1021/acsnano.1c03161
|
[61] |
A. Sarycheva, T. Makaryan, K. Maleski, et al., Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate, J. Phys. Chem. C, 121(2017), No. 36, p. 19983. doi: 10.1021/acs.jpcc.7b08180
|
[62] |
E. Pomerantseva and Y. Gogotsi, Two-dimensional heterostructures for energy storage, Nat. Energy, 2(2017), No. 7, art. No. 17089. doi: 10.1038/nenergy.2017.89
|
[63] |
T.F. Li, L.L. Yao, Q.L. Liu, et al., Fluorine-free synthesis of high-purity Ti3C2T x (T = OH, O) via alkali treatment, Angew. Chem. Int. Ed., 57(2018), No. 21, p. 6115. doi: 10.1002/anie.201800887
|
[64] |
M.K. Han, K. Maleski, C.E. Shuck, et al., Tailoring electronic and optical properties of MXenes through forming solid solutions, J. Am. Chem. Soc., 142(2020), No. 45, p. 19110. doi: 10.1021/jacs.0c07395
|
[65] |
T. Schultz, N.C. Frey, K. Hantanasirisakul, et al., Surface termination dependent work function and electronic properties of Ti3C2T x MXene, Chem. Mater., 31(2019), No. 17, p. 6590. doi: 10.1021/acs.chemmater.9b00414
|
[66] |
C.F.J. Zhang, Interfacial assembly of two-dimensional MXenes, J. Energy Chem., 60(2021), p. 417. doi: 10.1016/j.jechem.2020.12.036
|
[67] |
P.C. Lian, Y.F. Dong, Z.S. Wu, et al., Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries, Nano Energy, 40(2017), p. 1. doi: 10.1016/j.nanoen.2017.08.002
|
[68] |
R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, and H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CT x MXene electrodes for supercapacitor applications, Chem. Mater., 27(2015), No. 15, p. 5314. doi: 10.1021/acs.chemmater.5b01623
|
[69] |
X.L. Li, M. Li, Q. Yang, et al. , In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery, Adv. Energy Mater., 10(2020), No. 36, art. No. 2001791. doi: 10.1002/aenm.202001791
|
[70] |
X.L. Li, M. Li, Q. Yang, et al., Phase transition induced unusual electrochemical performance of V2CT X MXene for aqueous zinc hybrid-ion battery, ACS Nano, 14(2020), No. 1, p. 541. doi: 10.1021/acsnano.9b06866
|
[71] |
Y. Tian, Y.L. An, H. Wei, et al., Micron-sized nanoporous vanadium pentoxide arrays for high-performance gel zinc-ion batteries and potassium batteries, Chem. Mater., 32(2020), No. 9, p. 4054. doi: 10.1021/acs.chemmater.0c00787
|
[72] |
Y. Liu, Y. Jiang, Z. Hu, et al. , In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries, Adv. Funct. Mater., 31(2021), No. 8, art. No. 2008033. doi: 10.1002/adfm.202008033
|
[73] |
J. Chen, B.Q. Xiao, C.F. Hu, et al., Construction strategy of VO2@V2C 1D/2D heterostructure and improvement of zinc-ion diffusion ability in VO2 (B), ACS Appl. Mater. Interfaces, 14(2022), No. 25, p. 28760. doi: 10.1021/acsami.2c03646
|
[74] |
Q. Gao, W.W. Sun, P. Ilani-Kashkouli, et al., Tracking ion intercalation into layered Ti3C2 MXene films across length scales, Energy Environ. Sci., 13(2020), No. 8, p. 2549. doi: 10.1039/D0EE01580F
|
[75] |
Z.L. Li, Y.F. Wei, Y.Y. Liu, S. Yan, and M.Y. Wu, Dual strategies of metal preintercalation and in situ electrochemical oxidization operating on MXene for enhancement of ion/electron transfer and zinc-ion storage capacity in aqueous zinc-ion batteries, Adv. Sci., 10(2023), No. 8, art. No. e2206860. doi: 10.1002/advs.202206860
|
[76] |
O. Mashtalir, M. Naguib, V.N. Mochalin, et al., Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun., 4(2013), art. No. 1716. doi: 10.1038/ncomms2664
|
[77] |
H.B. Wang, J.F. Zhang, Y.P. Wu, H.J. Huang, and Q.G. Jiang, Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance, J. Phys. Chem. Solids, 115(2018), p. 172. doi: 10.1016/j.jpcs.2017.12.039
|
[78] |
F.F. Liu, Y.C. Liu, X.D. Zhao, K.Y. Liu, H.Q. Yin, and L.Z. Fan, Prelithiated V2C MXene: A high-performance electrode for hybrid magnesium/lithium-ion batteries by ion cointercalation, Small, 16(2020), No. 8, art. No. 1906076. doi: 10.1002/smll.201906076
|
[79] |
R.Z. Zhao, H.X. Di, C.X. Wang, et al., Encapsulating ultrafine Sb nanoparticles in Na+ pre-intercalated 3D porous Ti3C2T x MXene nanostructures for enhanced potassium storage performance, ACS Nano, 14(2020), No. 10, p. 13938. doi: 10.1021/acsnano.0c06360
|
[80] |
M. Lu, W.J. Han, H.J. Li, et al., Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity, Energy Storage Mater., 16(2019), p. 163. doi: 10.1016/j.ensm.2018.04.029
|
[81] |
M.Q. Zhao, C.E. Ren, M. Alhabeb, B. Anasori, M.W. Barsoum, and Y. Gogotsi, Magnesium-ion storage capability of MXenes, ACS Appl. Energy Mater., 2(2019), No. 2, p. 1572. doi: 10.1021/acsaem.8b02253
|
[82] |
J. Li, X.T. Yuan, C. Lin, et al., Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification, Adv. Energy Mater., 7(2017), No. 15, art. No. 1602725. doi: 10.1002/aenm.201602725
|
[83] |
P.A. Maughan, N. Tapia-Ruiz, and N. Bimbo, In-situ pillared MXene as a viable zinc-ion hybrid capacitor, Electrochim. Acta, 341(2020), art. No. 136061. doi: 10.1016/j.electacta.2020.136061
|
[84] |
M.J. Shi, B. Wang, C. Chen, J.W. Lang, C. Yan, and X.B. Yan, 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries, J. Mater. Chem. A, 8(2020), No. 46, p. 24635. doi: 10.1039/D0TA09085A
|
[85] |
X.D. Zhu, Z.Y. Cao, X.L. Li, et al., Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-ion batteries, Energy Storage Mater., 45(2022), p. 568. doi: 10.1016/j.ensm.2021.12.002
|
[86] |
Q. Wang, S.L. Wang, X.H. Guo, et al., MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life, Adv. Electron. Mater., 5(2019), No. 12, art. No. 1900537. doi: 10.1002/aelm.201900537
|
[87] |
X.L. Li, M. Li, W.Y. Xu, et al., V2CT x MXene sphere for aqueous ion storage, Energy Mater. Adv., 4(2023), art. No. 0066. doi: 10.34133/energymatadv.0066
|
[88] |
J.J. Shi, Y.X. Hou, Z.Y. Liu, et al., The high-performance MoO3− x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering, Nano Energy, 91(2022), art. No. 106651. doi: 10.1016/j.nanoen.2021.106651
|
[89] |
W.Y. Du, L. Miao, Z.Y. Song, et al., Kinetics-driven design of 3D VN/MXene composite structure for superior zinc storage and charge transfer, J. Power Sources, 536(2022), art. No. 231512. doi: 10.1016/j.jpowsour.2022.231512
|