留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 11
Nov.  2024

图(10)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  1809
  • HTML全文浏览量:  126
  • PDF下载量:  25
  • 被引次数: 0
Zhihao Zheng, Mingzhuang Xie, Guoqing Yu, Zegang Wu, Jingjing Zhong, Yi Wang, Hongliang Zhao,  and Fengqin Liu, Preparation of lithium-ion battery anode materials from graphitized spent carbon cathode derived from aluminum electrolysis, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2466-2475. https://doi.org/10.1007/s12613-024-2866-z
Cite this article as:
Zhihao Zheng, Mingzhuang Xie, Guoqing Yu, Zegang Wu, Jingjing Zhong, Yi Wang, Hongliang Zhao,  and Fengqin Liu, Preparation of lithium-ion battery anode materials from graphitized spent carbon cathode derived from aluminum electrolysis, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2466-2475. https://doi.org/10.1007/s12613-024-2866-z
引用本文 PDF XML SpringerLink
研究论文

铝电解石墨化废阴极炭块制备锂离子电池负极材料


  • 通讯作者:

    赵洪亮    E-mail: zhaohl@ustb.edu.cn

    刘风琴    E-mail: liufq@ustb.edu.cn

文章亮点

  • (1) 系统地研究了纯化过程中杂质去除对石墨微观结构的影响规律。
  • (2) 实现了从危险固废向锂电石墨负极材料的转变并研究了其电化学性能。
  • (3) 总结并提出了一条绿色高效的湿法工艺路线。
  • 石墨化废阴极炭块(SCC)是铝电解过程中产生的一种危险固体废弃物,针对废阴极炭块资源化利用的难题,本研究提出了浮选–酸浸的工艺对废石墨化阴极炭块进行纯化,并对纯化后的废阴极作为锂离子电池负极材料进行探究。采用单因素实验分别对浮选和酸浸工艺进行优化,当浮选粒径为−200目占90%,矿浆浓度为10%,主轴转速为1600 r/min,充气量0.2 m3/h时,SCC碳含量达93%;随后在浸出浓度5 mol/L、浸出时间100 min、浸出温度85°C以及浸出液固比5:1的条件下,SCC的碳含量可达99.58%。纯化后的废石墨化阴极作负极材料在0.1 C条件下初始容量为348.2 mAh/g,循环100次后可逆容量为347.8 mAh/g,与商用石墨相比,有着更好的可逆性和循环稳定性。因此,SCC经纯化后有望成为潜在的负极材料,该方法也为SCC的资源化回收利用提供了一条可行的途径。
  • Research Article

    Preparation of lithium-ion battery anode materials from graphitized spent carbon cathode derived from aluminum electrolysis

    + Author Affiliations
    • Graphitized spent carbon cathode (SCC) is a hazardous solid waste generated in the aluminum electrolysis process. In this study, a flotation–acid leaching process is proposed for the purification of graphitized SCC, and the use of the purified SCC as an anode material for lithium-ion batteries is explored. The flotation and acid leaching processes were separately optimized through one-way experiments. The maximum SCC carbon content (93wt%) was achieved at a 90% proportion of −200-mesh flotation particle size, a slurry concentration of 10wt%, a rotation speed of 1600 r/min, and an inflatable capacity of 0.2 m3/h (referred to as FSCC). In the subsequent acid leaching process, the SCC carbon content reached 99.58wt% at a leaching concentration of 5 mol/L, a leaching time of 100 min, a leaching temperature of 85°C, and an HCl/FSCC volume ratio of 5:1. The purified graphitized SCC (referred to as FSCC-CL) was utilized as an anode material, and it exhibited an initial capacity of 348.2 mAh/g at 0.1 C and a reversible capacity of 347.8 mAh/g after 100 cycles. Moreover, compared with commercial graphite, FSCC-CL exhibited better reversibility and cycle stability. Thus, purified SCC is an important candidate for anode material, and the flotation–acid leaching purification method is suitable for the resourceful recycling of SCC.
    • loading
    • [1]
      J. Yuan, J. Xiao, F.C. Li, et al., Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC, Ultrason. Sonochem., 41(2018), p. 608. doi: 10.1016/j.ultsonch.2017.10.027
      [2]
      K. Yang, J. Li, W.L. Huang, et al., A closed-circuit cycle process for recovery of carbon and valuable components from spent carbon cathode by hydrothermal acid-leaching method, J. Environ. Manage., 318(2022), art. No. 115503. doi: 10.1016/j.jenvman.2022.115503
      [3]
      M.Z. Xie, R.B. Li, H.L. Zhao, W. Liu, T.T. Lu, and F.Q. Liu, Detoxification of spent cathode carbon blocks from aluminum smelters by joint controlling temperature-vacuum process, J. Cleaner Prod., 249(2020), art. No. 119370. doi: 10.1016/j.jclepro.2019.119370
      [4]
      K. Yang, J. Li, C.P. Zhu, et al., Separation and recovery of valuable elements from acid leachate of spent carbon cathode by fractional precipitation method, J. Environ. Chem. Eng., 11(2023), No. 3, art. No. 110288. doi: 10.1016/j.jece.2023.110288
      [5]
      Z. Zhu, L. Xu, Z.H. Han, et al., Optimization of response surface methodology (RSM) for defluorination of spent carbon cathode (SCC) in fire-roasting aluminum electrolysis, Miner. Eng., 182(2022), art. No. 107565. doi: 10.1016/j.mineng.2022.107565
      [6]
      Z. Yao, Q.F. Zhong, J. Xiao, S.C. Ye, L. Tang, and Z.H. Zhang, An environmental-friendly process for dissociating toxic substances and recovering valuable components from spent carbon cathode, J. Hazard. Mater., 404(2021), art. No. 124120. doi: 10.1016/j.jhazmat.2020.124120
      [7]
      H.Y. Ren, C.L. Zhang, Q. Chang, H.M. Cheng, D.R. Li, and D.D. Zhang, Optimization of flotation conditions for spent pot lining carbon of aluminum reduction, Light Met., (2017), No. 9, p. 26.
      [8]
      Z.N. Shi, W. Li, X.W. Hu, B.J. Ren, B.L. Gao, and Z.W. Wang, Recovery of carbon and cryolite from spent pot lining of aluminium reduction cells by chemical leaching, Trans. Nonferrous Met. Soc. China, 22(2012), No. 1, p. 222. doi: 10.1016/S1003-6326(11)61164-3
      [9]
      J. Xiao, J. Yuan, Z.L. Tian, et al., Comparison of ultrasound-assisted and traditional caustic leaching of spent cathode carbon (SCC) from aluminum electrolysis, Ultrason. Sonochem., 40(2018), p. 21. doi: 10.1016/j.ultsonch.2017.06.024
      [10]
      B. Babu, P. Simon, and A. Balducci, Fast charging materials for high power applications, Adv. Energy Mater., 10(2020), No. 29, art. No. 2001128. doi: 10.1002/aenm.202001128
      [11]
      G.Q. Yu, M.Z. Xie, Z.H. Zheng, Z.G. Wu, H.L. Zhao, and F.Q. Liu, Efficiently regenerating spent lithium battery graphite anode materials through heat treatment processes for impurity dissipation and crystal structure repair, Resour. Conserv. Recycl., 199(2023), art. No. 107267. doi: 10.1016/j.resconrec.2023.107267
      [12]
      K. Yang, Z.J. Zhao, X. Xin, Z.L. Tian, K. Peng, and Y.Q. Lai, Graphitic carbon materials extracted from spent carbon cathode of aluminium reduction cell as anodes for lithium ion batteries: Converting the hazardous wastes into value-added materials, J. Taiwan Inst. Chem. Eng., 104(2019), p. 201. doi: 10.1016/j.jtice.2019.09.012
      [13]
      K. Yang, P.Y. Gong, Z.L. Tian, Y.Q. Lai, and J. Li, Recycling spent carbon cathode by a roasting method and its application in Li-ion batteries anodes, J. Cleaner Prod., 261(2020), art. No. 121090. doi: 10.1016/j.jclepro.2020.121090
      [14]
      K. Yang, P.Y. Gong, Z.L. Tian, K. Peng, and Y.Q. Lai, Carbon recovered from spent carbon cathode of aluminum reduction cell towards its valorisation as negative electrodes for lithium ion batteries, Diam. Relat. Mater., 109(2020), art. No. 108062. doi: 10.1016/j.diamond.2020.108062
      [15]
      K.Y. Shi, J. Wang, S.W. Wang, Z.M. Yu, P. Chen, and S. Li, Improving the flotation performance of coking coal using the reverse-direct flotation process, Energy Sources Part A, 40(2018), No. 23, p. 2886. doi: 10.1080/15567036.2018.1512686
      [16]
      Ö. Öney, Optimization of operating parameters of graphite flotation circuit using box-behnken design, Indian J. Chem. Technol., 25(2018), No. 2, p. 170.
      [17]
      F. Teng, T. Qu, and Y.N. Dai, Research of effect of alkali leaching factors on graphite purification through high pressure alkali leaching–atmospheric pressure acid leaching, J. Kunming Univ. Sci. Technol. Nat. Sci. Ed., 41(2016), No. 1, p. 14.
      [18]
      B.L. Xing, C.T. Zhang, Y.J. Cao, et al., Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries, Fuel Process. Technol., 172(2018), p. 162. doi: 10.1016/j.fuproc.2017.12.018
      [19]
      G.X. Wang, X.P. Shen, B. Wang, J. Yao, and J. Park, Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets, Carbon, 47(2009), No. 5, p. 1359. doi: 10.1016/j.carbon.2009.01.027
      [20]
      Z.W. Yang, H.J. Guo, X.H. Li, et al., Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors, J. Mater. Chem. A, 5(2017), No. 29, p. 15302. doi: 10.1039/C7TA03862C
      [21]
      S. Mancillas-Salas, J. Barroso-Flores, R. Villaurrutia, V. García-Montalvo, and E. López-Honorato, Production of few-layer graphene by wet media milling using organic solvents and different types of graphite, Ceram. Int., 46(2020), No. 2, p. 2413. doi: 10.1016/j.ceramint.2019.09.235
      [22]
      Z. Ma, Y. Cui, X. Xiao, et al., A reconstructed graphite-like carbon micro/nano-structure with higher capacity and comparative voltage plateau of graphite, J. Mater. Chem. A, 4(2016), No. 29, p. 11462. doi: 10.1039/C6TA02195F
      [23]
      Y. Gao, J.L. Zhang, Y.Q. Chen, and C.Y. Wang, Improvement of the electrochemical performance of spent graphite by asphalt coating, Surf. Interfaces, 24(2021), art. No. 101089. doi: 10.1016/j.surfin.2021.101089
      [24]
      J. Yang, X.Y. Zhou, Y.L. Zou, and J.J. Tang, A hierarchical porous carbon material for high power, lithium ion batteries, Electrochim. Acta, 56(2011), No. 24, p. 8576. doi: 10.1016/j.electacta.2011.07.047
      [25]
      J.H. Hou, C.B. Cao, F. Idrees, and X.L. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors, ACS Nano, 9(2015), No. 3, p. 2556. doi: 10.1021/nn506394r
      [26]
      N. Cao, Y.L. Zhang, L.L. Chen, et al., An innovative approach to recover anode from spent lithium-ion battery, J. Power Sources, 483(2021), art. No. 229163. doi: 10.1016/j.jpowsour.2020.229163
      [27]
      S. Zhang and P.F. Shi, Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte, Electrochim. Acta, 49(2004), No. 9-10, p. 1475. doi: 10.1016/S0013-4686(03)00929-0
      [28]
      Y.X. Chen, J. Li, Y.Q. Lai, J.M. Li, and Z.A. Zhang, Tailoring graphitic nanostructures in hard carbons as anode materials achieving efficient and ultrafast sodium storage, J. Mater. Sci., 53(2018), No. 14, p. 10313. doi: 10.1007/s10853-018-2295-3
      [29]
      J.K. Ou, Y.Z. Zhang, L. Chen, et al., Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries, J. Mater. Chem. A, 3(2015), No. 12, p. 6534. doi: 10.1039/C4TA06614F
      [30]
      S.B. Yang, X.L. Feng, L.J. Zhi, Q. Cao, J. Maier, and K. Müllen, Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage, Adv. Mater., 22(2010), No. 7, p. 838. doi: 10.1002/adma.200902795
      [31]
      A. Ramos, I. Cameán, N. Cuesta, and A.B. García, Graphitized stacked-cup carbon nanofibers as anode materials for lithium-ion batteries, Electrochim. Acta, 146(2014), p. 769. doi: 10.1016/j.electacta.2014.09.035

    Catalog


    • /

      返回文章
      返回