Cite this article as:

Qi Zhang, Guanghui Chen, Yuemeng Zhu, Zhengliang Xue, and Guang Xu, Effects of heating temperature and atmosphere on element distribution and microstructure in high-Mn/Al austenitic low-density steel, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp.2670-2680. https://dx.doi.org/10.1007/s12613-024-2867-y
Qi Zhang, Guanghui Chen, Yuemeng Zhu, Zhengliang Xue, and Guang Xu, Effects of heating temperature and atmosphere on element distribution and microstructure in high-Mn/Al austenitic low-density steel, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp.2670-2680. https://dx.doi.org/10.1007/s12613-024-2867-y
引用本文 PDF XML SpringerLink

加热温度和气氛对高Mn高Al奥氏体低密度钢元素分布和显微组织的影响

摘要: 本文研究了高Mn高Al 奥氏体低密度钢在 900~1200°C 温度下在空气、氮气和 氮气+二氧化碳混合气氛中等温保温后表面附近的元素分布和显微组织。在空气中在900°C和1000°C温度下等温保温期间,实验钢表面附近未产生铁素体, 而在1100~1200°C温度下保温,钢的表面附近形成铁素体。由于在等温1200°C更多的C 和 Mn从钢中渗出并扩散到表面,因此铁素体比例最高,C和Mn等元素扩散到表面与N和O反应产生氧化产物形成表面化合物层。温度越高,元素的扩散速率越大,因此表面化合物层的厚度越大。此外,在氮气中1100°C 等温保温后,表面附近的Al含量略有下降,而C和Mn含量没有变化,因此在表面附近没有形成铁素体。然而,在混合气氛中1100°C等温保温后,近表面的C和 Al元素含量下降,这导致少量的铁素体形成。在相同温度下等温保温,氮气气氛下的表面化合物层厚度最大,其次是混合气氛,空气中最薄。空气气氛下的元素损失和铁素体比例最大。氮气和混合气氛中元素损失和铁素体比例均较低,但氮气气氛中的化合物厚度大。综合考量以上结果,氮气和二氧化碳混合气氛是工业生产中高Mn高Al奥氏体低密度钢的理想加热气氛。

 

Effects of heating temperature and atmosphere on element distribution and microstructure in high-Mn/Al austenitic low-density steel

Abstract: The elemental distribution and microstructure near the surface of high-Mn/Al austenitic low-density steel were investigated after isothermal holding at temperatures of 900–1200°C in different atmospheres, including air, N2, and N2 + CO2. No ferrite was formed near the surface of the experimental steel during isothermal holding at 900 and 1000°C in air, while ferrite was formed near the steel surface at holding temperatures of 1100 and 1200°C. The ferrite fraction was larger at 1200°C because more C and Mn diffused to the surface, exuded from the steel, and then reacted with N and O to form oxidation products. The thickness of the compound scale increased owing to the higher diffusion rate at higher temperatures. In addition, after isothermal holding at 1100°C in N2, the Al content near the surface slightly decreased, while the C and Mn contents did not change. Therefore, no ferrite was formed near the surface. However, the near-surface C and Al contents decreased after holding at 1100°C in the N2 + CO2 mixed atmosphere, resulting in the formation of a small amount of ferrite. The compound scale was thickest in N2, followed by the N2 + CO2 mixed atmosphere, and thinnest in air. Overall, the element loss and ferrite fraction were largest after holding in air at the same temperature. The differences in element loss and ferrite fraction between in N2 and N2 + CO2 atmospheres were small, but the compound scale formed in N2 was significantly thicker. According to these results, N2 + CO2 is the ideal heating atmosphere for the industrial production of high-Mn/Al austenitic low-density steel.

 

/

返回文章
返回