留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(7)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  125
  • HTML全文浏览量:  49
  • PDF下载量:  10
  • 被引次数: 0
Jiaqiang Li, Hongtao Zhang, Jingtai Sun, Huadong Fu, and Jianxin Xie, Design of low-alloying and high-performance solid solution-strengthened copper alloys with element substitution for sustainable development, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2870-3
Cite this article as:
Jiaqiang Li, Hongtao Zhang, Jingtai Sun, Huadong Fu, and Jianxin Xie, Design of low-alloying and high-performance solid solution-strengthened copper alloys with element substitution for sustainable development, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2870-3
引用本文 PDF XML SpringerLink
研究论文

面向可持续发展的低合金化高性能固溶强化铜合金的元素替代设计


  • 通讯作者:

    张洪涛    E-mail: zht@ustb.edu.cn

    谢建新    E-mail: jxxie@mater.ustb.edu.cn

文章亮点

  • (1) 设计了低合金化的力学与导电性能优异的Cu–Zn–Sn–In合金。
  • (2) 系统表征了合金热处理和冷轧态显微组织。
  • (3) 明确了冷轧态Cu–Zn–Sn–In合金的强化机制。
  • 固溶强化铜合金具有成分和制造工艺简单、力学与导电综合性能高、成本低等优点,被广泛应用于高铁轨道接触线、电子元器件接插件等领域。突破低合金化和高性能化之间的矛盾,是固溶强化铜合金开发面临的一个重要挑战。本研究以典型固溶强化Cu–4Zn–1Sn合金为研究对象,提出采用In元素替代Zn和Sn元素实现低合金化的思路,设计并制备了Cu–1.5Zn–1Sn–0.4In和Cu–1.5Zn–0.9Sn–0.6In两种新型合金,合金元素的总含量分别降低43%和41%,而退火态的抗拉强度(UTS)和导电率(EC)的乘积分别提升14%和15%。经90%变形量冷轧后,两种新合金的UTS分别达到576 MPa和627 MPa,EC导电率分别为44.9%IACS和42.0%IACS,UTS与EC的乘积比退火态合金提升了97%和99%。冷轧态合金中位错大量增殖,位错强化效果分别达到332 MPa和356 MPa,是力学性能显著提升的主要原因。
  • Research Article

    Design of low-alloying and high-performance solid solution-strengthened copper alloys with element substitution for sustainable development

    + Author Affiliations
    • Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process, high mechanical and electrical comprehensive performances, and low cost; thus, they are widely used in high-speed rail contact wires, electronic component connectors, and other devices. Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys. Taking the typical solid solution-strengthened alloy Cu–4Zn–1Sn as the research object, we proposed using the element In to replace Zn and Sn to achieve low alloying in this work. Two new alloys, Cu–1.5Zn–1Sn–0.4In and Cu–1.5Zn–0.9Sn–0.6In, were designed and prepared. The total weight percentage content of alloying elements decreased by 43% and 41%, respectively, while the product of ultimate tensile strength (UTS) and electrical conductivity (EC) of the annealed state increased by 14% and 15%. After cold rolling with a 90% reduction, the UTS of the two new alloys reached 576 and 627 MPa, respectively, the EC was 44.9%IACS and 42.0%IACS, and the product of UTS and EC (UTS × EC) was 97% and 99% higher than that of the annealed state alloy. The dislocations proliferated greatly in cold-rolled alloys, and the strengthening effects of dislocations reached 332 and 356 MPa, respectively, which is the main reason for the considerable improvement in mechanical properties.
    • loading
    • [1]
      Y.X. Jiang, H.F. Lou, H.F. Xie, et al., Development status and prospects of advanced copper alloy, Strategic Study of CAE, 22(2020), No. 5, p. 84. doi: 10.15302/J-SSCAE-2020.05.015
      [2]
      C.Z. Huang, Y.B. Jiang, Z.X. Wu, et al., Significantly enhanced high-temperature mechanical properties of Cu–Cr–Zn–Zr–Si alloy with stable second phases and grain boundaries, Mater. Des., 233(2023), art. No. 112292. doi: 10.1016/j.matdes.2023.112292
      [3]
      K. Maki, Y. Ito, H. Matsunaga, and H. Mori, Solid-solution copper alloys with high strength and high electrical conductivity, Scripta Mater., 68(2013), No. 10, p. 777. doi: 10.1016/j.scriptamat.2012.12.027
      [4]
      J.R. Davis, ASM Specialty Handbook : Copper and Copper Alloys, ASM International, Ohio, 2001.
      [5]
      H. Zhang, X.C. Deng, and G.H. Zhang, Preparation and properties of multiphase solid-solution strengthened high-performance W–Cu alloys through alloying with Mo, Fe and Ni, Mater. Sci. Eng. A, 871(2023), art. No. 144909. doi: 10.1016/j.msea.2023.144909
      [6]
      S.W. Huang, P.F. Zhou, F.X. Luo, et al., Effects of Ni and Mn contents on precipitation and strengthening behavior in Cu–Ni–Mn ternary alloys, Mater. Charact., 199(2023), art. No. 112775. doi: 10.1016/j.matchar.2023.112775
      [7]
      J.Y. Wang, X.Q. Lü, S.Q. Chen, Y. Gao, and Y. Liu, Effect of Ni content on the solid solution strengthening behavior of Cu–Ni–Ag alloys, Mater. Sci. Eng. Powder Metall., 26(2021), No. 3, p. 263.
      [8]
      R.W. Liao, L.R. Wang, X.Z. Liu, and Y. Liu, Microstructure and properties of Cu–Zn–Al–Fe alloy, Hot Working Technol., 48(2019), No. 16. p. 75.
      [9]
      P. Yang, D.Y. He, W. Shao, et al., Study of the microstructure and mechanical properties of Cu–Sn alloys formed by selective laser melting with different Sn contents, J. Mater. Res. Technol., 24(2023), p. 5476. doi: 10.1016/j.jmrt.2023.04.198
      [10]
      E. Bruder, P. Braun, H.U. Rehman, et al., Influence of solute effects on the saturation grain size and rate sensitivity in Cu–X alloys, Scripta Mater., 144(2018), p. 5. doi: 10.1016/j.scriptamat.2017.09.031
      [11]
      E.A. Olivetti and J.M. Cullen, Toward a sustainable materials system, Science, 360(2018), No. 6396, p. 1396. doi: 10.1126/science.aat6821
      [12]
      D. Raabe, C.C. Tasan, and E.A. Olivetti, Strategies for improving the sustainability of structural metals, Nature, 575(2019), p. 64. doi: 10.1038/s41586-019-1702-5
      [13]
      X.Y. Li and K. Lu, Playing with defects in metals, Nat. Mater., 16(2017), No. 7, p. 700. doi: 10.1038/nmat4929
      [14]
      X.Y. Li and K. Lu, Improving sustainability with simpler alloys, Science, 364(2019), No. 6442, p. 733. doi: 10.1126/science.aaw9905
      [15]
      H.T. Zhang, H.D. Fu, X.Q. He, et al., Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening, Acta Mater., 200(2020), p. 803. doi: 10.1016/j.actamat.2020.09.068
      [16]
      S.S. Zhang, H.H. Zhu, L. Zhang, W.Q. Zhang, H.Q. Yang, and X.Y. Zeng, Microstructure and properties in QCr0.8 alloy produced by selective laser melting with different heat treatment, J. Alloys Compd., 800(2019), p. 286. doi: 10.1016/j.jallcom.2019.06.018
      [17]
      X.W. Zuo, K. Han, C.C. Zhao, R.M. Niu, and E.G. Wang, Microstructure and properties of nanostructured Cu28wt%Ag microcomposite deformed after solidifying under a high magnetic field, Mater. Sci. Eng. A, 619(2014), p. 319. doi: 10.1016/j.msea.2014.09.070
      [18]
      T.P. Harzer, S. Djaziri, R. Raghavan, and G. Dehm, Nanostructure and mechanical behavior of metastable Cu–Cr thin films grown by molecular beam epitaxy, Acta Mater., 83(2015), p. 318. doi: 10.1016/j.actamat.2014.10.013
      [19]
      A. Akhtar and E. Teghtsoonian, Substitutional solution hardening of magnesium single crystals, Philos. Mag., 25(1972), No. 4, p. 897. doi: 10.1080/14786437208229311
      [20]
      J.Z. Li, H. Ding, B.M. Li, W.L. Gao, J. Bai, and G. Sha, Effect of Cr and Sn additions on microstructure, mechanical-electrical properties and softening resistance of Cu–Cr–Sn alloy, Mater. Sci. Eng. A, 802(2021), art. No. 140628. doi: 10.1016/j.msea.2020.140628
      [21]
      H.E. Friedrich and B.L. Mordike, Magnesium technology, Springer-Verlag Berlin Heidelberg, Berlin, 2006.
      [22]
      L. Balogh, T. Ungár, Y.H. Zhao, et al., Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper–zinc alloys, Acta Mater., 56(2008), No. 4, p. 809. doi: 10.1016/j.actamat.2007.10.053
      [23]
      Y. Zhang, N.R. Tao, and K. Lu, Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles, Acta Mater., 56(2008), No. 11, p. 2429. doi: 10.1016/j.actamat.2008.01.030
      [24]
      N. Hansen, Hall–Petch relation and boundary strengthening, Scripta Mater., 51(2004), No. 8, p. 801. doi: 10.1016/j.scriptamat.2004.06.002
      [25]
      Y. Liu, Z. Li, Y.X. Jiang, Y. Zhang, Z.Y. Zhou, and Q. Lei, The microstructure evolution and properties of a Cu–Cr–Ag alloy during thermal-mechanical treatment, J. Mater. Res., 32(2017), No. 7, p. 1324. doi: 10.1557/jmr.2017.17
      [26]
      K. Yamaguchi, T. Ishigaki, Y. Inoue, et al., Comprehensive elemental screening of solid-solution copper alloys, Sci. Technol. Adv. Mater.: Methods, 3(2023), No. 1, art. No. 2250704. doi: 10.1080/27660400.2023.2250704
      [27]
      Y. Abe, S. Semboshi, N. Masahashi, S.H. Lim, E.A. Choi, and S.Z. Han, Mechanical strength and electrical conductivity of Cu–In solid solution alloy wires, Metall. Mater. Trans. A, 54(2023), No. 3, p. 928. doi: 10.1007/s11661-022-06938-1

    Catalog


    • /

      返回文章
      返回