留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 6
Jun.  2024

图(13)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  674
  • HTML全文浏览量:  121
  • PDF下载量:  11
  • 被引次数: 0
Liangliang Yuan, Mingxing Guo, Yi Wang, Yun Wang,  and Linzhong Zhuang, Synergistic effect of gradient Zn content and multiscale particles on the mechanical properties of Al–Zn–Mg–Cu alloys with coupling distribution of coarse–fine grains, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1392-1405. https://doi.org/10.1007/s12613-024-2871-2
Cite this article as:
Liangliang Yuan, Mingxing Guo, Yi Wang, Yun Wang,  and Linzhong Zhuang, Synergistic effect of gradient Zn content and multiscale particles on the mechanical properties of Al–Zn–Mg–Cu alloys with coupling distribution of coarse–fine grains, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1392-1405. https://doi.org/10.1007/s12613-024-2871-2
引用本文 PDF XML SpringerLink
研究论文

梯度锌含量和多尺度粒子对粗/细晶耦合分布Al–Zn–Mg–Cu合金力学性能的协同影响


  • 通讯作者:

    袁亮亮    E-mail: liangliang_yuan@163.com

    郭明星    E-mail: mingxingguo@skl.ustb.edu.cn

    庄林忠    E-mail: linzhongzhuang@163.com

文章亮点

  • (1) 系统研究了梯度锌含量与多尺度富铁相协同影响再结晶组织和织构演化规律;
  • (2) 基于粗/细晶耦合调控,新型高强度Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe合金预时效态平均塑性应变比可达0.708;
  • (3) 揭示了多尺度第二相颗粒的演化和影响机制,以及粗/细晶耦合分布铝合金对应的高成形性作用机制。
  • 高强度Al–Zn–Mg–Cu合金有望应用于车身结构件,然而,其室温冲压成形性能仍有待提高。为此,本论文设计了具有梯度Zn含量的Al–Zn–Mg–Cu系合金,系统研究了梯度Zn含量对沉淀相、富铁相以及晶粒组织结构演化的影响规律,开发出了兼具高强度和高成形性新型Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe。研究结果表明,随Zn含量增加,更容易形成多尺度沉淀相和富铁相的耦合分布特征,进而诱发形成由粗/细晶交替分布的胞状组织,最终使得该合金在高强度状态下表征冲压成形性能的平均塑性应变比达0.708。基于组织性能表征,本文揭示了合金内多尺度弥散粒子形成和影响作用机制。所开发的多过程耦合控制方法在有效提高Al–Zn–Mg–Cu系高强度合金的室温冲压成形性能方面潜力巨大。
  • Research Article

    Synergistic effect of gradient Zn content and multiscale particles on the mechanical properties of Al–Zn–Mg–Cu alloys with coupling distribution of coarse–fine grains

    + Author Affiliations
    • This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain structure of the alloys, designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe (wt%) alloy with high strength and formability. With the increase of Zn content, forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy. This phenomenon induces the formation of cell-like structures with alternate distribution of coarse and fine grains, and the average plasticity–strain ratio (characterizing the formability) of the pre-aged alloy with a high strength is up to 0.708. Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys. The developed coupling control process exhibits considerable potential, revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys.
    • loading
    • [1]
      C. Brian, P. Grant, and C. Johnston, Automotive Engineering : Lightweight , Functional , and Novel Materials, CRC Press, Boca Raton, 2008.
      [2]
      D. Feng, X.D. Li, X.M. Zhang, S.D. Liu, J.T. Wang, and Y. Liu, The novel heat treatments of aluminium alloy characterized by multistage and non-isothermal routes: A review, J. Cent. South Univ., 30(2023), No. 9, p. 2833. doi: 10.1007/s11771-023-5439-9
      [3]
      O. Engler, C. Schäfer, H.J. Brinkman, J. Brecht, P. Beiter, and K. Nijhof, Flexible rolling of aluminium alloy sheet—Process optimization and control of materials properties, J. Mater. Process. Technol., 229(2016), p. 139. doi: 10.1016/j.jmatprotec.2015.09.010
      [4]
      L.L. Yuan, M.X. Guo, Y. Yan, W.J. Feng, Z.Y. Liu, and L.Z. Zhuang, Theoretical design and distribution control of precipitates and solute elements in Al–Zn–Mg–Cu alloys with heterostructure, Trans. Nonferrous Met. Soc. China, 31(2021), No. 11, p. 3328. doi: 10.1016/S1003-6326(21)65732-1
      [5]
      P.A. Schuster, J.A. Österreicher, G. Kirov, C. Sommitsch, O. Kessler, and E. Mukeli, Characterisation and comparison of process chains for producing automotive structural parts from 7xxx aluminium sheets, Metals, 9(2019), No. 3, p. 305. doi: 10.3390/met9030305
      [6]
      J. Shin, T. Kim, D. Kim, D. Kim, and K. Kim, Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications, J. Alloys Compd., 698(2017), p. 577. doi: 10.1016/j.jallcom.2016.12.269
      [7]
      H.T. Zhang and J.K. Liu, Microstructure characteristics and mechanical property of aluminum alloy/stainless steel lap joints fabricated by MIG welding–brazing process, Mater. Sci. Eng. A, 528(2011), No. 19–20, p. 6179. doi: 10.1016/j.msea.2011.04.03
      [8]
      J.Y. Xue, Y.X. Li, H. Chen, and Z.T. Zhu, Wettability, microstructure and properties of 6061 aluminum alloy/304 stainless steel butt joint achieved by laser-metal inert-gas hybrid welding-brazing, Trans. Nonferrous Met. Soc. China, 28(2018), No. 10, p. 1938. doi: 10.1016/S1003-6326(18)64839-3
      [9]
      S.H. Chen, G.S. Daehn, A. Vivek, et al., Interfacial microstructures and mechanical property of vaporizing foil actuator welding of aluminum alloy to steel, Mater. Sci. Eng. A, 659(2016), p. 12. doi: 10.1016/j.msea.2016.02.040
      [10]
      M. Ao, Y.C. Ji, P. Yi, et al., Relationship between elements migration of α-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al–Zn–Mg alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 112. doi: 10.1007/s12613-022-2428-1
      [11]
      N.N. Chen, M. Wang, H.P. Wang, Z.X. Wan, and B.E. Carlson, Microstructural and mechanical evolution of Al/steel interface with Fe2Al5 growth in resistance spot welding of aluminum to steel, J. Manuf. Processes, 34(2018), p. 424. doi: 10.1016/j.jmapro.2018.06.024
      [12]
      P. Tan, Y.D. Sui, H.N. Jin, S. Zhu, Y.H. Jiang, and L.N. Han, Effect of Zn content on the microstructure and mechanical properties of as-cast Al–Zn–Mg–Cu alloy with medium Zn content, J. Mater. Res. Technol., 18(2022), p. 2620. doi: 10.1016/j.jmrt.2022.03.168
      [13]
      Y. Zou, X.D. Wu, S.B. Tang, Y.C. Wang, K. Zhao, and L.F. Cao, The effect of pre-ageing/stretching on the ageing-hardening behavior of Al–Zn–Mg–Cu alloys correlated with Zn/Mg ratio, Mater. Sci. Eng. A, 830(2022), art. No. 142331. doi: 10.1016/j.msea.2021.142331
      [14]
      K.L. Zheng, D.J. Politis, L.L. Wang, and J.G. Lin, A review on forming techniques for manufacturing lightweight complex—shaped aluminium panel components, Int. J. Lightweight Mater. Manuf., 1(2018), No. 2, p. 55.
      [15]
      H. Wang, Y.B. Luo, P. Friedman, M.H. Chen, and L. Gao, Warm forming behavior of high strength aluminum alloy AA7075, Trans. Nonferrous Met. Soc. China, 22(2012), No. 1, p. 1. doi: 10.1016/S1003-6326(11)61131-X
      [16]
      P.E. Krajewski and J.G. Schroth, Superplastic Forming of Advanced Metallic Materials, Woodhead Publishing, Cambridge, 2011.
      [17]
      Y.H. Peng, C.Y. Liu, L.L. Wei, H.J. Jiang, and Z.J. Ge, Quench sensitivity and microstructures of high-Zn-content Al–Zn–Mg–Cu alloys with different Cu contents and Sc addition, Trans. Nonferrous Met. Soc. China, 31(2021), No. 1, p. 24. doi: 10.1016/S1003-6326(20)65476-0
      [18]
      B. Wang, J.W. Li, Z.H. Xie, G.J. Wang, and G. Yu, High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 155. doi: 10.1007/s12613-023-2689-3
      [19]
      A. David, S.K. Gopal, P. Lakshmanan, and A.S. Chenbagam, Corrosion, mechanical and microstructural properties of aluminum 7075—carbon nanotube nanocomposites for robots in corrosive environments, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1140. doi: 10.1007/s12613-022-2592-3
      [20]
      L.L. Yuan, M.X. Guo, X.G. Dong, and L.Z. Zhuang, Design, evolution, formation and effect mechanism of coupling distributed soft and hard micro-regions in Al–Zn–Mg–Cu–Fe alloys with high formability, Mater. Sci. Eng. A, 855(2022), art. No. 143951. doi: 10.1016/j.msea.2022.143951
      [21]
      L.L. Yuan, M.X. Guo, J.S. Zhang, and L.Z. Zhuang, Synergy in hybrid multi-scale particles for the improved formability of Al–Zn–Mg–Cu alloys, J. Mater. Res. Technol., 10(2021), p. 1143. doi: 10.1016/j.jmrt.2020.12.068
      [22]
      L.L. Yuan, M.X. Guo, K.C. Yu, J.S. Zhang, and L.Z. Zhuang, Multi-scale iron-rich phases induce fine microstructures in Al–Zn–Mg–Cu–Fe alloys, Philos. Mag., 101(2021), No. 12, p. 1417. doi: 10.1080/14786435.2021.1916114
      [23]
      H. She, D. Shu, W. Chu, J. Wang, and B.D. Sun, Microstructural aspects of second phases in as-cast and homogenized 7055 aluminum alloy with different impurity contents, Metall. Mater. Trans. A, 44(2013), No. 8, p. 3504. doi: 10.1007/s11661-013-1709-8
      [24]
      C. Mondal and A.K. Mukhopadhyay, On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy, Mater. Sci. Eng. A, 391(2005), No. 1-2, p. 367.
      [25]
      C. Freiburg and B. Grushko, An Al13Fe4 phase in the Al–Cu–Fe alloy system, J. Alloys Compd., 210(1994), No. 1-2, p. 149.
      [26]
      H. She, D. Shu, A.P. Dong, J. Wang, B.D. Sun, and H.C. Lai, Relationship of particle stimulated nucleation, recrystallization and mechanical properties responding to Fe and Si contents in hot-extruded 7055 aluminum alloys, J. Mater. Sci. Technol., 35(2019), No. 11, p. 2570. doi: 10.1016/j.jmst.2019.07.014
      [27]
      T.A. Bennett, R.H. Petrov, L.A.I. Kestens, L.Z. Zhuang, and P. de Smet, The effect of particle-stimulated nucleation on texture banding in an aluminium alloy, Scripta Mater., 63(2010), No. 5, p. 461. doi: 10.1016/j.scriptamat.2010.04.028
      [28]
      L.P. Troeger and E.A. Starke Jr, Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al–Mg–Si–Cu alloy, Mater. Sci. Eng. A, 293(2000), No. 1-2, p. 19.
      [29]
      L.L. Yuan, M.X. Guo, A.M. Habraken, L. Duchene, and L.Z. Zhuang, Extremely improved formability of Al–Zn–Mg–Cu alloys via micro-domain heterogeneous structure, Mater. Sci. Eng. A, 837(2022), art. No. 142737. doi: 10.1016/j.msea.2022.142737
      [30]
      R. Shabadi, S. Suwas, S. Kumar, H.J. Roven, and E.S. Dwarkadasa, Texture and formability studies on AA7020 Al alloy sheets, Mater. Sci. Eng. A, 558(2012), p. 439. doi: 10.1016/j.msea.2012.08.024
      [31]
      J.G. Jeon, J.H. Shin, S.E. Shin, and D.H. Bae, Improvement in the anisotropic mechanical properties and formability of Al–Si–Mg–Cu-based alloy sheets, Mater. Sci. Eng. A, 799(2021), art. No. 140199. doi: 10.1016/j.msea.2020.140199
      [32]
      Y.J. Bai, Z.X. Wang, B. Jiang, et al., Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2212. doi: 10.1007/s12613-023-2652-3
      [33]
      A. Reyes, O.S. Hopperstad, O.G. Lademo, and M. Langseth, Modeling of textured aluminum alloys used in a bumper system: Material tests and characterization, Comput. Mater. Sci., 37(2006), No. 3, p. 246. doi: 10.1016/j.commatsci.2005.07.001

    Catalog


    • /

      返回文章
      返回