Cite this article as:

Shanshan Jiang, Hao Qiu, Shaohua Xu, Xiaomin Xu, Jingjing Jiang, Beibei Xiao, Paulo Sérgio Barros Julião, Chao Su, Daifen Chen, and Wei Zhou, Investigation and optimization of high-valent Ta-doped SrFeO3–δ as air electrode for intermediate-temperature solid oxide fuel cells, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp.2102-2109. https://dx.doi.org/10.1007/s12613-024-2872-1
Shanshan Jiang, Hao Qiu, Shaohua Xu, Xiaomin Xu, Jingjing Jiang, Beibei Xiao, Paulo Sérgio Barros Julião, Chao Su, Daifen Chen, and Wei Zhou, Investigation and optimization of high-valent Ta-doped SrFeO3–δ as air electrode for intermediate-temperature solid oxide fuel cells, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp.2102-2109. https://dx.doi.org/10.1007/s12613-024-2872-1
引用本文 PDF XML SpringerLink

高价态钽元素掺杂SrFeO3-δ作为中温固体氧化物燃料电池空气电极的研究与优化

摘要: 固体氧化物燃料电池(SOFC)是一种能够将化学能直接转化为电能的能源装置,凭借着独特的优势,包括燃料多样性,能量转化率高,全固态和环保等备受关注。虽然SOFC具有广阔的市场应用潜力,但目前一些棘手的问题严重限制其广泛使用,特别是在较高工作温度(800–1000°C)下存在稳定性变差和成本变高等问题。所以将SOFC操作温度下降到800°C以下是非常有必要的。随着温度的降低,阴极活性不足的问题凸显。因此,目前学者们的研究重点是开发在中低温下具有高活性和高稳定性的SOFC阴极材料。本研究为探索中温固体氧化物燃料电池(IT-SOFCs)的高活性和热机械稳定性空气电极,开发出一种锶铁基钙钛矿氧化物的B位掺杂10mol% Ta5+的新型空气电极(SrTa0.1Fe0.9O3–δ, STF),并系统地评价了Ta5+掺杂对空气电极的物质结构、过渡金属热还原、氧非化学计量比、热膨胀系数和电化学性能的影响。通过10mol% Ta5+掺杂,SrFeO3–δ的热膨胀系数(TEC)从34.1 × 10–6 (SrFeO3–δ)降至14.6 × 10-6 K–1 (STF),接近电解质的TEC (Sm0.2Ce0.8O1.9, SDC为13.3 × 10–6 K–1),具有良好的热机械相容性。在550–750°C时,STF表现出优异的氧空位浓度(0.262–0.331),这对氧还原反应(ORR)至关重要。氧程序升温脱附曲线(O2-TPD)表明,铁离子的热还原起始温度在420°C左右,与热重曲线和电导率曲线的拐点高度吻合。在600°C时,STF电极的面积比电阻(ASR)为0.152 Ω·cm2,峰值功率密度(PPD)为749 mW·cm–2。通过引入30wt% Sm0.2Ce0.8O1.9 (SDC)电解质,进一步提高ORR活性,STF + SDC复合阴极在600°C下的ASR值达到0.115 Ω·cm2,甚至可以与基准含钴阴极Ba0.5Sr0.5Co0.8Fe0.2O3–δ (BSCF)相媲美。弛豫时间(DRT)分布分析表明,复合阴极的形成改善了氧的表面交换和体扩散。在650°C下,STF + SDC复合阴极的PPD达到了1117 mW·cm–2。优异的结果表明,STF和STF + SDC是很有前途的空气电极。

 

Investigation and optimization of high-valent Ta-doped SrFeO3–δ as air electrode for intermediate-temperature solid oxide fuel cells

Abstract: To explore highly active and thermomechanical stable air electrodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs), 10mol% Ta5+ doped in the B site of strontium ferrite perovskite oxide (SrTa0.1Fe0.9O3–δ, STF) is investigated and optimized. The effects of Ta5+ doping on structure, transition metal reduction, oxygen nonstoichiometry, thermal expansion, and electrical performance are evaluated systematically. Via 10mol% Ta5+ doping, the thermal expansion coefficient (TEC) decreased from 34.1 × 10–6 (SrFeO3–δ) to 14.6 × 10–6 K–1 (STF), which is near the TEC of electrolyte (13.3 × 10–6 K–1 for Sm0.2Ce0.8O1.9, SDC), indicates excellent thermomechanical compatibility. At 550–750°C, STF shows superior oxygen vacancy concentrations (0.262 to 0.331), which is critical in the oxygen-reduction reaction (ORR). Oxygen temperature-programmed desorption (O2-TPD) indicated the thermal reduction onset temperature of iron ion is around 420°C, which matched well with the inflection points on the thermos-gravimetric analysis and electrical conductivity curves. At 600°C, the STF electrode shows area-specific resistance (ASR) of 0.152 Ω·cm2 and peak power density (PPD) of 749 mW·cm–2. ORR activity of STF was further improved by introducing 30wt% Sm0.2Ce0.8O1.9 (SDC) powder, STF + SDC composite cathode achieving outstanding ASR value of 0.115 Ω·cm2 at 600°C, even comparable with benchmark cobalt-containing cathode, Ba0.5Sr0.5Co0.8Fe0.2O3–δ (BSCF). Distribution of relaxation time (DRT) analysis revealed that the oxygen surface exchange and bulk diffusion were improved by forming a composite cathode. At 650°C, STF + SDC composite cathode achieving an outstanding PPD of 1117 mW·cm–2. The excellent results suggest that STF and STF + SDC are promising air electrodes for IT-SOFCs.

 

/

返回文章
返回