Cite this article as:

Jie Wang, Wei Wang, Xuheng Chen, Junfang Bao, Qiuyue Hao, Heng Zheng, and Runsheng Xu, Role of iron ore in enhancing gasification of iron coke: Structural evolution, influence mechanism and kinetic analysis, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp.58-69. https://dx.doi.org/10.1007/s12613-024-2873-0
Jie Wang, Wei Wang, Xuheng Chen, Junfang Bao, Qiuyue Hao, Heng Zheng, and Runsheng Xu, Role of iron ore in enhancing gasification of iron coke: Structural evolution, influence mechanism and kinetic analysis, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp.58-69. https://dx.doi.org/10.1007/s12613-024-2873-0
引用本文 PDF XML SpringerLink

铁矿石对铁焦气化的促进作用:结构演化、影响机理及动力学分析

摘要: 高反应性铁焦的使用为低碳炼铁提供了一条绿色途径。为了揭示铁矿石对铁焦气化行为和动力学的影响机理,本文探究了铁矿石对铁焦微观结构的影响机制,还通过非等温热重法对铁焦和焦炭的气化反应进行了对比研究。研究结果表明,与焦炭相比,铁焦的微孔和比表面积较大,且微孔会进一步扩展并相互连接,这为气化剂二氧化碳分子提供了更多的吸附位点,从而降低了铁焦的气化起始温度。结合SEM、XRD和拉曼研究发现从铁矿石中还原出来的金属铁嵌入炭基质中,降低了铁焦碳结构的有序性和石墨化程度,这是铁焦碳原子气化反应活性提高的主要原因。同时,在非等温气化过程中加快升温速度可提高铁焦的气化反应活性。动力学研究表明,由于铁焦具有丰富的孔隙结构,随机孔模型可以有效地表示铁焦的气化过程。并且随着铁矿石含量的增加,气化活化能从焦炭的 246.2 kJ/mol 逐步降低至含15wt%铁矿石铁焦的192.5 kJ/mol。本研究为铁焦气化反应行为及动力学提供了深入机制理解,对于合理设计高反应性铁焦具有重要的基础和技术意义。

 

Role of iron ore in enhancing gasification of iron coke: Structural evolution, influence mechanism and kinetic analysis

Abstract: The utilization of iron coke provides a green pathway for low-carbon ironmaking. To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification, the effect of iron ore on the microstructure of iron coke was investigated. Furthermore, a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method. The findings indicate that compared to coke, iron coke exhibits an augmentation in micropores and specific surface area, and the micropores further extend and interconnect. This provides more adsorption sites for CO2 molecules during the gasification process, resulting in a reduction in the initial gasification temperature of iron coke. Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke. The metallic iron reduced from iron ore is embedded in the carbon matrix, reducing the orderliness of the carbon structure, which is primarily responsible for the heightened reactivity of the carbon atoms. The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure. Moreover, as the proportion of iron ore increases, the activation energy for the carbon gasification gradually decreases, from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.

 

/

返回文章
返回