留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 12
Dec.  2024

图(7)

数据统计

分享

计量
  • 文章访问数:  533
  • HTML全文浏览量:  240
  • PDF下载量:  64
  • 被引次数: 0
Shijie Zhang, Di Lan, Jiajun Zheng, Ailing Feng, Yaxing Pei, Shichang Cai, Suxuan Du, Xingliang Chen, Guanglei Wu,  and Zirui Jia, Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2749-2759. https://doi.org/10.1007/s12613-024-2875-y
Cite this article as:
Shijie Zhang, Di Lan, Jiajun Zheng, Ailing Feng, Yaxing Pei, Shichang Cai, Suxuan Du, Xingliang Chen, Guanglei Wu,  and Zirui Jia, Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2749-2759. https://doi.org/10.1007/s12613-024-2875-y
引用本文 PDF XML SpringerLink
研究论文

甘蔗衍生碳材料中合理构建异质界面以实现优异的电磁波吸收


  • 通讯作者:

    冯爱玲    E-mail: ailing@mail.xjtu.edu.cn

    陈星亮    E-mail: chenxlmoon@163.com

    贾梓睿    E-mail: jiazirui@qdu.edu.cn

文章亮点

  • (1) 通过煅烧甘蔗/CoZn–ZIF获得了具有丰富异质界面的碳基杂化材料
  • (2) 杂化材料中的异质结构提供了大量的有效的极性界面
  • (3) 优化后的杂化材料能够获得7.28 GHz的有效吸收带宽
  • (4) 材料优异的吸波性能得益于良好的阻抗匹配和协同效应
  • 第五代移动通信技术的广泛应用正在推动电磁波吸收材料朝向“薄、轻、宽、强”的方向快速发展。吸波材料中异质界面的构建对于提高其电磁波吸收能力至关重要。本文旨在开发一种具有丰富异质界面的吸波材料。本文通过合理设计甘蔗和CoZn-ZIF的异质结构并进行煅烧而制备了一系列具有丰富异质界面的超轻复合材料(Co/ZnO@N-掺杂碳/层堆叠碳、MSC)。研究了所制备的杂化材料的成分和结构,并通过控制前驱体中CoZn-ZIF含量来调节其衍生物的电磁参数。结果表明所得杂化材料都具有良好的电磁波吸收性能,特别是MSC-3样品。在填料负载量为20 wt%,厚度仅为1.6 mm的条件下时,优化后的最小反射损失和有效吸收带可分别达到 -42 dB和7.28 GHz。经过分析材料优异的吸波性能主要归功于材料中丰富异质界面产生的介电损耗和磁性Co单质引起的磁损耗的协同效应,并有效地改善了材料的阻抗匹配。同时,甘蔗衍生的层状堆叠得碳材料形成了连续的导电网络,可以通过多次反射和传导损耗进一步耗散电磁能。此外,模拟得雷达散射截面(RCS)结果表明,MSC-3在现实远场条件下具有出色的电磁波衰减能力。
  • Research Article

    Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption

    + Author Affiliations
    • The pervasive adoption of 5th generation mobile communication technology propels electromagnetic wave (EW) absorbents to achieve high-level performance. The heterointerface construction is crucial to the improvement of absorption ability. Herein, a series of ultralight composites with rational heterointerfaces (Co/ZnO@N-doped C/layer-stacked C, MSC) is fabricated by calcination with rational construction of sugarcane and CoZn–zeolitic imidazolate framework (ZIF). The components and structures of as-prepared composites were investigated, and their electromagnetic parameters could be adjusted by the content of CoZn–ZIFs. All composites possess excellent EW absorption performance, especially MSC-3. The optimal minimum reflection loss and effective absorption band of MSC-3 can reach −42 dB and 7.28 GHz at the thickness of only 1.6 mm with 20wt% filler loading. This excellent performance is attributed to the synergistic effect of dielectric loss stemming from the multiple heterointerfaces and magnetic loss induced by magnetic single Co. The sugarcane-derived layer-stacked carbon has formed consecutive conductive networks and has further dissipated the electromagnetic energy through multiple reflection and conduction losses. Moreover, the simulated radar cross section (RCS) technology manifests that MSC-3 possesses outstanding EW attenuation capacity under realistic far-field conditions. This study provides a strategy for building efficient absorbents based on biomass.
    • loading
    • [1]
      T.B. Zhao, Z.R. Jia, Y. Zhang, and G.L. Wu, Multiphase molybdenum carbide doped carbon hollow sphere engineering: The superiority of unique double-shell structure in microwave absorption, Small, 19(2023), No. 6, art. No. e2206323. doi: 10.1002/smll.202206323
      [2]
      X. Zhong, M.K. He, C.Y. Zhang, Y.Q. Guo, J.W. Hu, and J.W. Gu, Heterostructured BN@Co–C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band, Adv. Funct. Mater., 34(2024), No. 19, art. No. 2313544. doi: 10.1002/adfm.202313544
      [3]
      Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, and G.L. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites, Adv. Funct. Mater., 32(2022), No. 34, art. No. 2204499. doi: 10.1002/adfm.202204499
      [4]
      M. Zhang, L.B. Zhao, W.X. Zhao, et al., Boosted electromagnetic wave absorption performance from synergistic induced polarization of SiCNWs@MnO2@PPy heterostructures, Nano Res., 16(2023), No. 2, p. 3558.
      [5]
      T.Q. Hou, J.W. Wang, T.T. Zheng, Y. Liu, G.L. Wu, and P.F. Yin, Anion exchange of metal particles on carbon-based skeletons for promoting dielectric equilibrium and high-efficiency electromagnetic wave absorption, Small, 19(2023), No. 42, art. No. 2303463. doi: 10.1002/smll.202303463
      [6]
      Y.L. Zhang, K.P. Ruan, K. Zhou, and J.W. Gu, Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding, Adv. Mater., 35(2023), No. 16, art. No. 2211642. doi: 10.1002/adma.202211642
      [7]
      H.L. Lv, Y.X. Yao, S.C. Li, et al., Staggered circular nanoporous graphene converts electromagnetic waves into electricity, Nat. Commun., 14(2023), art. No. 1982. doi: 10.1038/s41467-023-37436-6
      [8]
      S.J. Zhang, B. Cheng, Z.G. Gao, et al., Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects, J. Alloys Compd., 893(2022), art. No. 162343. doi: 10.1016/j.jallcom.2021.162343
      [9]
      D. Wu, Y.Q. Wang, S.L. Deng, D. Lan, Z.N. Xiang, and Q.C. He, Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption, Nano Res., 16(2023), No. 2, p. 1859.
      [10]
      R.L. Sun, G.L. Yan, X.L. Zhang, et al., Fe–ZIF-derived hollow porous carbon nanofibers for electromagnetic wave absorption, Chem. Eng. J., 455(2023), art. No. 140608. doi: 10.1016/j.cej.2022.140608
      [11]
      S.J. Zhang, B. Cheng, Z.R. Jia, et al., The art of framework construction: Hollow-structured materials toward high-efficiency electromagnetic wave absorption, Adv. Compos. Hybrid Mater., 5(2022), No. 3, p. 1658. doi: 10.1007/s42114-022-00514-2
      [12]
      X.G. Huang, L. Zhang, G.Y. Yu, J.W. Wei, and G.F. Shao, Polarization genes dominated heteroatom-doped graphene aerogels toward super-efficiency microwave absorption, J. Mater. Chem. C, 11(2023), No. 29, p. 9804. doi: 10.1039/D3TC01965A
      [13]
      X.G. Huang, G.Y. Yu, Y.K. Zhang, M.J. Zhang, and G.F. Shao, Design of cellular structure of graphene aerogels for electromagnetic wave absorption, Chem. Eng. J., 426(2021), art. No. 131894. doi: 10.1016/j.cej.2021.131894
      [14]
      R.S. Li, Q. Gao, H.N. Xing, et al., Lightweight, multifunctional MXene/polymer composites with enhanced electromagnetic wave absorption and high-performance thermal conductivity, Carbon, 183(2021), p. 301. doi: 10.1016/j.carbon.2021.07.029
      [15]
      L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
      [16]
      J.H. Wen, D. Lan, Y.Q. Wang, et al., Absorption properties and mechanism of lightweight and broadband electromagnetic wave absorbing porous carbon by swelling treatment, Int. J. Miner. Metall. Mater., 31(2024), No. 7, p. 1701. doi: 10.1007/s12613-024-2881-0
      [17]
      Z.R. Jia, D. Lan, M. Chang, Y. Han, and G.L. Wu, Heterogeneous interfaces and 3D foam structures synergize to build superior electromagnetic wave absorbers, Mater. Today Phys., 37(2023), art. No. 101215. doi: 10.1016/j.mtphys.2023.101215
      [18]
      Z. Guo, D. Lan, Z.R. Jia, et al., Multiple tin compounds modified carbon fibers to construct heterogeneous interfaces for corrosion prevention and electromagnetic wave absorption, Nano Micro Lett., 2024. doi: 10.1007/s40820-024-01527-w.
      [19]
      S.J. Zhang, J.Y. Li, X.T. Jin, and G.L. Wu, Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 428. doi: 10.1007/s12613-022-2546-9
      [20]
      C. Sun, D. Lan, Z.R. Jia, Z. Gao, and G.L. Wu, Kirkendall effect-induced ternary heterointerfaces engineering for high polarization loss MOF–LDH–MXene absorbers, Small, 2024. doi: 10.1002/smll.202405874.
      [21]
      M.T. Qiao, Y.R. Tian, J.X. Li, et al., Core–shell Fe3O4@SnO2 nanochains toward the application of radar-infrared-visible compatible stealth, J. Colloid Interface Sci., 609(2022), p. 330. doi: 10.1016/j.jcis.2021.12.012
      [22]
      S.J. Zhang, Z.G. Gao, Z.B. Sun, et al., Solid solution strategy for bimetallic metal-polyphenolic networks deriving electromagnetic wave absorbers with regulated heterointerfaces, Appl. Surf. Sci., 611(2023), art. No. 155707. doi: 10.1016/j.apsusc.2022.155707
      [23]
      X.Y. Zhang, C.K. Xia, W.H. Liu, M.Y. Hao, Y. Miao, and F. Gao, Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1375. doi: 10.1007/s12613-023-2605-x
      [24]
      Q. Zhou, T.T. Shi, B. Xue, et al., Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1198. doi: 10.1007/s12613-022-2583-4
      [25]
      S.J. Zhang, Z.W. Zhao, B. Cheng, S. Wang, Y.L. Wu, and G.L. Wu, Tailored construction of magnetic hollow glass microspheres/N-doped carbon toward lightweight and efficient electromagnetic wave absorption, Compos. Commun., 36(2022), art. No. 101369. doi: 10.1016/j.coco.2022.101369
      [26]
      D. Lan, H.F. Li, M. Wang, et al., Recent advances in construction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials, Mater. Res. Bull., 171(2024), art. No. 112630. doi: 10.1016/j.materresbull.2023.112630
      [27]
      L. Kong, S.Y. Zhang, Y.J. Liu, H.L. Xu, X.M. Fan, and J.F. Huang, Flexible CNTs/CNF-WPU aerogel for smart electromagnetic wave absorbing with tuning effective absorption bandwidth, Carbon, 207(2023), p. 13. doi: 10.1016/j.carbon.2023.02.067
      [28]
      Y.L. Wu, D. Lan, J.W. Ren, and S.J. Zhang, A mini review of MOFs derived multifunctional absorbents: From perspective of components regulation, Mater. Today Phys., 36(2023), art. No. 101178. doi: 10.1016/j.mtphys.2023.101178
      [29]
      Z.R. Jia, L. Sun, Z. Gao, and D. Lan, Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption, Nano Res, 2024. doi: 10.1007/s12274-024-6939-0.
      [30]
      T. Zhao, D. Lan, Z.R. Jia, Z. Gao, and G.L. Wu, Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption, Nano Res., 2024. doi: 10.1007/s12274-024-6938-1.
      [31]
      Z.G. Gao, Y.H. Song, S.J. Zhang, et al., Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging metal–organic frameworks, J. Colloid Interface Sci., 600(2021), p. 288. doi: 10.1016/j.jcis.2021.05.009
      [32]
      G.J. Ma, P.F. Yin, L.M. Zhang, et al., Biomass-derived porous carbon combined with CoFe2O4/CoFe@C for available low-frequency microwave dissipation, Powder Technol., 415(2023), art. No. 118196. doi: 10.1016/j.powtec.2022.118196
      [33]
      J.R. Zhao, H. Wang, M.J. Chen, Y. Li, Z. Wang, C.Q. Fang, and P.B. Liu, Construct of CoZnO/CSP biomass-derived carbon composites with broad effective absorption bandwidth of 7.2 GHz and excellent microwave absorption performance, J. Colloid Interface Sci., 639(2023), p. 160. doi: 10.1016/j.jcis.2023.02.050
      [34]
      Y.L. Qi, P.F. Yin, L.M. Zhang, et al., Novel microwave absorber of Ni xMn1– xFe2O4/carbonized chaff (x = 0.3, 0.5, and 0.7) based on biomass, ACS Omega, 4(2019), No. 7, p. 12376. doi: 10.1021/acsomega.9b01568
      [35]
      H.Q. Zhao, Y. Cheng, W. Liu, et al., Biomass-derived porous carbon-based nanostructures for microwave absorption, Nano Micro Lett., 11(2019), No. 1, art. No. 24. doi: 10.1007/s40820-019-0255-3
      [36]
      Z.C. Lou, Q.Y. Wang, W. Sun, et al., Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability, Chem. Eng. J., 430(2022), art. No. 133178 doi: 10.1016/j.cej.2021.133178
      [37]
      S.J. Zhang, Z.R. Jia, B. Cheng, Z.W. Zhao, F. Lu, and G.L. Wu, Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-review, Adv. Compos. Hybrid Mater., 5(2022), No. 3, p. 2440. doi: 10.1007/s42114-022-00458-7
      [38]
      S. Chen, Y.B. Meng, X.L. Wang, et al., Hollow tubular MnO2/MXene (Ti3C2, Nb2C, and V2C) composites as high-efficiency absorbers with synergistic anticorrosion performance, Carbon, 218(2024), art. No. 118698. doi: 10.1016/j.carbon.2023.118698
      [39]
      C.J. Li, X. Qian, M.Y. Hao, et al., Outstanding electromagnetic wave absorption performance of polyacrylonitrile-based ultrahigh modulus carbon fibers decorated with CoZn-bimetallic ZIFs, J. Alloys Compd., 950(2023), art. No. 169912. doi: 10.1016/j.jallcom.2023.169912
      [40]
      S.J. Zhang, Y.X. Pei, Z.W. Zhao, C.L. Guan, and G.L. Wu, Simultaneous manipulation of polarization relaxation and conductivity toward self-repairing reduced graphene oxide based ternary hybrids for efficient electromagnetic wave absorption, J. Colloid Interface Sci., 630(2023), p. 453. doi: 10.1016/j.jcis.2022.09.149
      [41]
      L. Kong, S.H. Luo, G.Q. Zhang, et al., Interfacial polarization dominant CNTs/PyC hollow microspheres as a lightweight electromagnetic wave absorbing material, Carbon, 193(2022), p. 216. doi: 10.1016/j.carbon.2022.03.016
      [42]
      S.J. Zhang, D. Lan, X.L. Chen, et al., Three-dimensional macroscopic absorbents: From synergistic effects to advanced multifunctionalities, Nano Res., 17(2024), No. 3, p. 1952. doi: 10.1007/s12274-023-6120-1
      [43]
      D. Lan, Y. Hu, M. Wang, Y. Wang, Z. Gao, and Z.R. Jia, Perspective of electromagnetic wave absorbing materials with continuously tunable effective absorption frequency bands, Compos. Commun., 50(2024), art. No. 101993. doi: 10.1016/j.coco.2024.101993
      [44]
      D. Lan, H.J. Zhou, and H.J. Wu, A polymer sponge with dual absorption of mechanical and electromagnetic energy, J. Colloid Interface Sci., 633(2023), p. 92. doi: 10.1016/j.jcis.2022.11.102
      [45]
      Y.C. Wang, W. Zhou, G.L. Zeng, et al., Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers, Carbon, 175(2021), p. 233. doi: 10.1016/j.carbon.2021.01.001
      [46]
      D. Lan, Y. Wang, Y.Y. Wang, et al., Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline, J. Colloid Interface Sci., 651(2023), p. 494. doi: 10.1016/j.jcis.2023.08.019
      [47]
      R. Jiang, Y.Q. Wang, J.Y. Wang, Q.C. He, and G.L. Wu, Controlled formation of multiple core–shell structures in metal–organic frame materials for efficient microwave absorption, J. Colloid Interface Sci., 648(2023), p. 25. doi: 10.1016/j.jcis.2023.05.197
      [48]
      T.T. Cheng, Y.Y. Guo, Y.X. Xie, et al., Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance, Carbon, 206(2023), p. 181. doi: 10.1016/j.carbon.2023.02.052
      [49]
      Y. Liu, X. Ren, X. Zhou, et al., Defect design and vacancy engineering of NiCo2Se4 spinel composite for excellent electromagnetic wave absorption, Ceram. Int., 2024. doi: 10.1016/j.ceramint.2024.09.016.
      [50]
      D. Wu, J. Jiang, S.L. Deng, Q.C. He, and Y.Q. Wang, Rational construction of mushroom-like Ni@N-doped carbon tubes composites with enhanced electromagnetic wave absorption, J. Alloys Compd., 963(2023), art. No. 171230. doi: 10.1016/j.jallcom.2023.171230
      [51]
      J.X. Zhou, D. Lan, F. Zhang, et al., Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band, Small, 19(2023), No. 52, art. No. 2304932. doi: 10.1002/smll.202304932
      [52]
      S.L. Deng, J. Jiang, D. Wu, Q.C. He, and Y.Q. Wang, Three-dimensional conductive network constructed by in situ preparation of sea urchin-like NiFe2O4 in expanded graphite for efficient microwave absorption, J. Colloid Interface Sci., 650(2023), p. 710. doi: 10.1016/j.jcis.2023.07.003
      [53]
      X.L. Chen, F. Zhang, D. Lan, et al., State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: From the perspective of nitrogen source, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 220. doi: 10.1007/s42114-023-00792-4
      [54]
      S.J. Zhang, D. Lan, J.J. Zheng, et al., Perspectives of nitrogen-doped carbons for electromagnetic wave absorption, Carbon, 221(2024), art. No. 118925. doi: 10.1016/j.carbon.2024.118925
      [55]
      W.H. Huang, X.X. Zhang, Y.N. Zhao, J. Zhang, and P.B. Liu, Hollow N-doped carbon polyhedra embedded Co and Mo2C nanoparticles for high-efficiency and wideband microwave absorption, Carbon, 167(2020), p. 19. doi: 10.1016/j.carbon.2020.05.073
      [56]
      Y. Zhang, X.H. Liu, Z.Q. Guo, et al., MXene@Co hollow spheres structure boosts interfacial polarization for broadband electromagnetic wave absorption, J. Mater. Sci. Technol., 176(2024), p. 167. doi: 10.1016/j.jmst.2023.07.061
      [57]
      P. Miao, Z. Yu, W.X. Chen, et al., Synergetic dielectric and magnetic losses of a core–shell Co/MnO/C nano complex toward highly efficient microwave absorption, Inorg. Chem., 61(2022), No. 3, p. 1787. doi: 10.1021/acs.inorgchem.1c03749
      [58]
      Y.M. Luo, P.F. Yin, G.L. Wu, et al., Porous carbon sphere decorated with Co/Ni nanoparticles for strong and broadband electromagnetic dissipation, Carbon, 197(2022), p. 389. doi: 10.1016/j.carbon.2022.06.084
      [59]
      Z.H. Zhou, Q.Q. Zhu, Y. Liu, Y. Zhang, Z.R. Jia, and G.L. Wu, Construction of self-assembly based tunable absorber: Lightweight, hydrophobic and self-cleaning properties, Nanomicro Lett., 15(2023), No. 1, art. No. 137.
      [60]
      J.X. Xiao, X.S. Qi, X. Gong, et al., Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M = Mn, Ni, and Zn) nanocomposites by defect and interface engineering, J. Mater. Sci. Technol., 139(2023), p. 137. doi: 10.1016/j.jmst.2022.08.022
      [61]
      J.Y. Wang, Y.Q. Wang, R. Jiang, S.S. Chen, Q.C. He, and G.L. Wu, Self-assembly of submillimeter porous structure on metal–organic framework to construct heterogeneous interface for controlling microwave absorption, Mater. Today Phys., 35(2023), art. No. 101126. doi: 10.1016/j.mtphys.2023.101126
      [62]
      T.B. Zhao, Z.R. Jia, J.K. Liu, Y. Zhang, G.L. Wu, and P.F. Yin, Multiphase interfacial regulation based on hierarchical porous molybdenum selenide to build anticorrosive and multiband tailorable absorbers, Nano Micro Lett., 16(2023), No. 1, art. No. 6.
      [63]
      P.F. Yin, Y.M. Luo, D. Lan, et al., Structural engineering of porous biochar loaded with ferromagnetic/anti-ferromagnetic NiCo2O4/CoO for excellent electromagnetic dissipation with flexible and self-cleaning properties, J. Mater. Sci. Technol., 180(2024), p. 12. doi: 10.1016/j.jmst.2023.08.057
      [64]
      J. Jiang, D. Lan, Y. Li, et al., Construction of spherical heterogeneous interface on ZnFe2O4@C composite nanofibers for highly efficient microwave absorption, Ceram. Int., 50(2024), p. 38331. doi: 10.1016/j.ceramint.2024.07.197
      [65]
      J.J. Li, Q.Q. Zhu, J.H. Zhu, et al., Inimitable 3D pyrolytic branched hollow architecture with multi-scale conductive network for microwave absorption, J. Mater. Sci. Technol., 173(2024), p. 170. doi: 10.1016/j.jmst.2023.06.066
      [66]
      Y. Han, M.J. Han, T.B. Zhao, et al., Design of morphology-controlled cobalt-based spinel oxides for efficient X-band microwave absorption, Mater. Res. Bull., 172(2024), art. No. 112670. doi: 10.1016/j.materresbull.2023.112670
      [67]
      L.Y. Yu, Q.Q. Zhu, Z.Q. Guo, Y.H. Cheng, Z.R. Jia, and G.L. Wu, Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures, J. Mater. Sci. Technol., 170(2024), p. 129. doi: 10.1016/j.jmst.2023.06.024
      [68]
      Q.F. Ban, Y. Li, L.W. Li, et al., Amorphous carbon engineering of hierarchical carbonaceous nanocomposites toward boosted dielectric polarization for electromagnetic wave absorption, Carbon, 201(2023), p. 1011. doi: 10.1016/j.carbon.2022.10.017
      [69]
      X.L. Cao, D. Lan, Y. Zhang, Z.R. Jia, G.L. Wu, and P.F. Yin, Construction of three-dimensional conductive network and heterogeneous interfaces via different ratio for tunable microwave absorption, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 187. doi: 10.1007/s42114-023-00763-9
      [70]
      S. Zhang, X.H. Liu, C.Y. Jia, et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics, Nano Micro Lett., 15(2023), No. 1, art. No. 204. doi: 10.1007/s40820-023-01179-2
      [71]
      T.B. Zhao, T.T. Zheng, D. Lan, et al., Self-assembly tungsten selenide hybrid ternary MOF derived magnetic alloys via multi-polarization to boost microwave absorption, Nano Res., 17(2024), No. 3, p. 1625. doi: 10.1007/s12274-023-6160-6
      [72]
      S. Zhang, Z.R. Jia, Y. Zhang, and G.L. Wu, Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers, Nano Res., 16(2023), No. 2, p. 3395.
      [73]
      P.F. Yin, L.M. Zhang, J. Wang, X. Feng, J.W. Dai, and Y.T. Tang, Facile preparation of cotton-derived carbon fibers loaded with hollow Fe3O4 and CoFe NPs for significant low-frequency electromagnetic absorption, Powder Technol., 380(2021), p. 134. doi: 10.1016/j.powtec.2020.11.044
      [74]
      X. Feng, P.F. Yin, L.M. Zhang, et al., Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 559. doi: 10.1007/s12613-022-2488-2
      [75]
      H.Y. Wang and D.M. Zhu, Design of radar absorbing structure using SiCf/epoxy composites for X band frequency range, Ind. Eng. Chem. Res., 57(2018), No. 6, p. 2139. doi: 10.1021/acs.iecr.7b04905
      [76]
      A.L. Feng, D. Lan, J.K. Liu, G.L. Wu, and Z.R. Jia, Dual strategy of A-site ion substitution and self-assembled MoS2 wrapping to boost permittivity for reinforced microwave absorption performance, J. Mater. Sci. Technol., 180(2024), p. 1. doi: 10.1016/j.jmst.2023.08.060
      [77]
      P.F. Yin, Y. Deng, L.M. Zhang, et al., Facile synthesis and microwave absorption investigation of activated carbon@Fe3O4 composites in the low frequency band, RSC Adv., 8(2018), No. 41, p. 23048. doi: 10.1039/C8RA04141E
      [78]
      J.X. Zhou, X.M. Huang, D. Lan, et al., Polymorphic cerium-based Prussian blue derivatives with in situ growing CNT/Co heterojunctions for enhanced microwave absorption via polarization and magnetization, Nano Res., 17(2024), No. 3, p. 2050. doi: 10.1007/s12274-023-6216-7
      [79]
      Z.G. Gao, K. Yang, Z.H. Zhao, et al., Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 405. doi: 10.1007/s12613-022-2555-8
      [80]
      L.Y. Yu, D. Lan, Z.Q. Guo, et al., Multi-level hollow sphere rich in heterojunctions with dual function: Efficient microwave absorption and antiseptic, J. Mater. Sci. Technol., 189(2024), p. 155. doi: 10.1016/j.jmst.2024.01.004
      [81]
      Y. He, Q. Su, D. Liu, et al., Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance, Chem. Eng. J., 491(2024), p. 152041. doi: 10.1016/j.cej.2024.152041
      [82]
      X.X. Luo, K.K. Zhang, Y.Y. Zhou, H.J. Wu, and H. Xie, In situ construction of Fe3Al@Al2O3 core–shell particles with excellent electromagnetic absorption, J. Colloid Interface Sci., 611(2022), p. 306. doi: 10.1016/j.jcis.2021.12.084
      [83]
      J.R. Zhao, H. Wang, Y. Li, Z. Wang, C.Q. Fang, and P.B. Liu, Construction of self-assembled bilayer core–shell V2O3 microspheres as absorber with superior microwave absorption performance, J. Colloid Interface Sci., 639(2023), p. 68. doi: 10.1016/j.jcis.2023.02.059
      [84]
      Y.L. Pan, D. Lan, Z.R. Jia, et al., Multi-mode tunable electromagnetic wave absorber based on hollow nano-cage structure and self-anticorrosion performance, Adv. Compos. Hybrid Mater., 7(2024), No. 2, art. No. 40. doi: 10.1007/s42114-024-00851-4
      [85]
      J.W. Wen, X.X. Li, G. Chen, Z.N. Wang, X.J. Zhou, and H.J. Wu, Controllable adjustment of cavity of core-shelled Co3O4@NiCo2O4 composites via facile etching and deposition for electromagnetic wave absorption, J. Colloid Interface Sci., 594(2021), p. 424. doi: 10.1016/j.jcis.2021.03.056
      [86]
      Z.H. Zhou, D. Lan, J.W. Ren, et al., Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption, J. Mater. Sci. Technol., 185(2024), p. 165. doi: 10.1016/j.jmst.2023.11.010
      [87]
      W.D. Zhang, X. Zhang, Q. Zhu, Y. Zheng, L.F. Liotta, and H.J. Wu, High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber, J. Colloid Interface Sci., 586(2021), p. 457. doi: 10.1016/j.jcis.2020.10.109
      [88]
      X. Su, J. Wang, T. Liu, et al., Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement, Adv. Funct. Mater., 24(2024), art. No. 2403397.
      [89]
      L. Kong, S.Y. Zhang, Y.J. Liu, et al., Hierarchical architecture bioinspired CNTs/CNF electromagnetic wave absorbing materials, Carbon, 207(2023), p. 198. doi: 10.1016/j.carbon.2023.03.024
      [90]
      B. Shi, H.S. Liang, Z.J. Xie, Q. Chang, and H.J. Wu, Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1388. doi: 10.1007/s12613-023-2599-4
      [91]
      X. Su, Y. Zhang, J. Wang, and Y. Liu, Enhanced electromagnetic wave absorption and mechanical performances of graphite nanosheet/ PVDF foams via ice dissolution and normal pressure drying, J. Mater. Chem. C, 12(2024), p. 7775. doi: 10.1039/D4TC00929K

    Catalog


    • /

      返回文章
      返回