Cite this article as: |
Shijie Zhang, Di Lan, Jiajun Zheng, Ailing Feng, Yaxing Pei, Shichang Cai, Suxuan Du, Xingliang Chen, Guanglei Wu, and Zirui Jia, Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2749-2759. https://doi.org/10.1007/s12613-024-2875-y |
冯爱玲 E-mail: ailing@mail.xjtu.edu.cn
陈星亮 E-mail: chenxlmoon@163.com
贾梓睿 E-mail: jiazirui@qdu.edu.cn
[1] |
T.B. Zhao, Z.R. Jia, Y. Zhang, and G.L. Wu, Multiphase molybdenum carbide doped carbon hollow sphere engineering: The superiority of unique double-shell structure in microwave absorption, Small, 19(2023), No. 6, art. No. e2206323. doi: 10.1002/smll.202206323
|
[2] |
X. Zhong, M.K. He, C.Y. Zhang, Y.Q. Guo, J.W. Hu, and J.W. Gu, Heterostructured BN@Co–C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band, Adv. Funct. Mater., 34(2024), No. 19, art. No. 2313544. doi: 10.1002/adfm.202313544
|
[3] |
Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, and G.L. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites, Adv. Funct. Mater., 32(2022), No. 34, art. No. 2204499. doi: 10.1002/adfm.202204499
|
[4] |
M. Zhang, L.B. Zhao, W.X. Zhao, et al., Boosted electromagnetic wave absorption performance from synergistic induced polarization of SiCNWs@MnO2@PPy heterostructures, Nano Res., 16(2023), No. 2, p. 3558.
|
[5] |
T.Q. Hou, J.W. Wang, T.T. Zheng, Y. Liu, G.L. Wu, and P.F. Yin, Anion exchange of metal particles on carbon-based skeletons for promoting dielectric equilibrium and high-efficiency electromagnetic wave absorption, Small, 19(2023), No. 42, art. No. 2303463. doi: 10.1002/smll.202303463
|
[6] |
Y.L. Zhang, K.P. Ruan, K. Zhou, and J.W. Gu, Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding, Adv. Mater., 35(2023), No. 16, art. No. 2211642. doi: 10.1002/adma.202211642
|
[7] |
H.L. Lv, Y.X. Yao, S.C. Li, et al., Staggered circular nanoporous graphene converts electromagnetic waves into electricity, Nat. Commun., 14(2023), art. No. 1982. doi: 10.1038/s41467-023-37436-6
|
[8] |
S.J. Zhang, B. Cheng, Z.G. Gao, et al., Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects, J. Alloys Compd., 893(2022), art. No. 162343. doi: 10.1016/j.jallcom.2021.162343
|
[9] |
D. Wu, Y.Q. Wang, S.L. Deng, D. Lan, Z.N. Xiang, and Q.C. He, Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption, Nano Res., 16(2023), No. 2, p. 1859.
|
[10] |
R.L. Sun, G.L. Yan, X.L. Zhang, et al., Fe–ZIF-derived hollow porous carbon nanofibers for electromagnetic wave absorption, Chem. Eng. J., 455(2023), art. No. 140608. doi: 10.1016/j.cej.2022.140608
|
[11] |
S.J. Zhang, B. Cheng, Z.R. Jia, et al., The art of framework construction: Hollow-structured materials toward high-efficiency electromagnetic wave absorption, Adv. Compos. Hybrid Mater., 5(2022), No. 3, p. 1658. doi: 10.1007/s42114-022-00514-2
|
[12] |
X.G. Huang, L. Zhang, G.Y. Yu, J.W. Wei, and G.F. Shao, Polarization genes dominated heteroatom-doped graphene aerogels toward super-efficiency microwave absorption, J. Mater. Chem. C, 11(2023), No. 29, p. 9804. doi: 10.1039/D3TC01965A
|
[13] |
X.G. Huang, G.Y. Yu, Y.K. Zhang, M.J. Zhang, and G.F. Shao, Design of cellular structure of graphene aerogels for electromagnetic wave absorption, Chem. Eng. J., 426(2021), art. No. 131894. doi: 10.1016/j.cej.2021.131894
|
[14] |
R.S. Li, Q. Gao, H.N. Xing, et al., Lightweight, multifunctional MXene/polymer composites with enhanced electromagnetic wave absorption and high-performance thermal conductivity, Carbon, 183(2021), p. 301. doi: 10.1016/j.carbon.2021.07.029
|
[15] |
L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
|
[16] |
J.H. Wen, D. Lan, Y.Q. Wang, et al., Absorption properties and mechanism of lightweight and broadband electromagnetic wave absorbing porous carbon by swelling treatment, Int. J. Miner. Metall. Mater., 31(2024), No. 7, p. 1701. doi: 10.1007/s12613-024-2881-0
|
[17] |
Z.R. Jia, D. Lan, M. Chang, Y. Han, and G.L. Wu, Heterogeneous interfaces and 3D foam structures synergize to build superior electromagnetic wave absorbers, Mater. Today Phys., 37(2023), art. No. 101215. doi: 10.1016/j.mtphys.2023.101215
|
[18] |
Z. Guo, D. Lan, Z.R. Jia, et al., Multiple tin compounds modified carbon fibers to construct heterogeneous interfaces for corrosion prevention and electromagnetic wave absorption, Nano Micro Lett., 2024. doi: 10.1007/s40820-024-01527-w.
|
[19] |
S.J. Zhang, J.Y. Li, X.T. Jin, and G.L. Wu, Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 428. doi: 10.1007/s12613-022-2546-9
|
[20] |
C. Sun, D. Lan, Z.R. Jia, Z. Gao, and G.L. Wu, Kirkendall effect-induced ternary heterointerfaces engineering for high polarization loss MOF–LDH–MXene absorbers, Small, 2024. doi: 10.1002/smll.202405874.
|
[21] |
M.T. Qiao, Y.R. Tian, J.X. Li, et al., Core–shell Fe3O4@SnO2 nanochains toward the application of radar-infrared-visible compatible stealth, J. Colloid Interface Sci., 609(2022), p. 330. doi: 10.1016/j.jcis.2021.12.012
|
[22] |
S.J. Zhang, Z.G. Gao, Z.B. Sun, et al., Solid solution strategy for bimetallic metal-polyphenolic networks deriving electromagnetic wave absorbers with regulated heterointerfaces, Appl. Surf. Sci., 611(2023), art. No. 155707. doi: 10.1016/j.apsusc.2022.155707
|
[23] |
X.Y. Zhang, C.K. Xia, W.H. Liu, M.Y. Hao, Y. Miao, and F. Gao, Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1375. doi: 10.1007/s12613-023-2605-x
|
[24] |
Q. Zhou, T.T. Shi, B. Xue, et al., Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1198. doi: 10.1007/s12613-022-2583-4
|
[25] |
S.J. Zhang, Z.W. Zhao, B. Cheng, S. Wang, Y.L. Wu, and G.L. Wu, Tailored construction of magnetic hollow glass microspheres/N-doped carbon toward lightweight and efficient electromagnetic wave absorption, Compos. Commun., 36(2022), art. No. 101369. doi: 10.1016/j.coco.2022.101369
|
[26] |
D. Lan, H.F. Li, M. Wang, et al., Recent advances in construction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials, Mater. Res. Bull., 171(2024), art. No. 112630. doi: 10.1016/j.materresbull.2023.112630
|
[27] |
L. Kong, S.Y. Zhang, Y.J. Liu, H.L. Xu, X.M. Fan, and J.F. Huang, Flexible CNTs/CNF-WPU aerogel for smart electromagnetic wave absorbing with tuning effective absorption bandwidth, Carbon, 207(2023), p. 13. doi: 10.1016/j.carbon.2023.02.067
|
[28] |
Y.L. Wu, D. Lan, J.W. Ren, and S.J. Zhang, A mini review of MOFs derived multifunctional absorbents: From perspective of components regulation, Mater. Today Phys., 36(2023), art. No. 101178. doi: 10.1016/j.mtphys.2023.101178
|
[29] |
Z.R. Jia, L. Sun, Z. Gao, and D. Lan, Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption, Nano Res, 2024. doi: 10.1007/s12274-024-6939-0.
|
[30] |
T. Zhao, D. Lan, Z.R. Jia, Z. Gao, and G.L. Wu, Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption, Nano Res., 2024. doi: 10.1007/s12274-024-6938-1.
|
[31] |
Z.G. Gao, Y.H. Song, S.J. Zhang, et al., Electromagnetic absorbers with Schottky contacts derived from interfacial ligand exchanging metal–organic frameworks, J. Colloid Interface Sci., 600(2021), p. 288. doi: 10.1016/j.jcis.2021.05.009
|
[32] |
G.J. Ma, P.F. Yin, L.M. Zhang, et al., Biomass-derived porous carbon combined with CoFe2O4/CoFe@C for available low-frequency microwave dissipation, Powder Technol., 415(2023), art. No. 118196. doi: 10.1016/j.powtec.2022.118196
|
[33] |
J.R. Zhao, H. Wang, M.J. Chen, Y. Li, Z. Wang, C.Q. Fang, and P.B. Liu, Construct of CoZnO/CSP biomass-derived carbon composites with broad effective absorption bandwidth of 7.2 GHz and excellent microwave absorption performance, J. Colloid Interface Sci., 639(2023), p. 160. doi: 10.1016/j.jcis.2023.02.050
|
[34] |
Y.L. Qi, P.F. Yin, L.M. Zhang, et al., Novel microwave absorber of Ni xMn1– xFe2O4/carbonized chaff (x = 0.3, 0.5, and 0.7) based on biomass, ACS Omega, 4(2019), No. 7, p. 12376. doi: 10.1021/acsomega.9b01568
|
[35] |
H.Q. Zhao, Y. Cheng, W. Liu, et al., Biomass-derived porous carbon-based nanostructures for microwave absorption, Nano Micro Lett., 11(2019), No. 1, art. No. 24. doi: 10.1007/s40820-019-0255-3
|
[36] |
Z.C. Lou, Q.Y. Wang, W. Sun, et al., Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability, Chem. Eng. J., 430(2022), art. No. 133178 doi: 10.1016/j.cej.2021.133178
|
[37] |
S.J. Zhang, Z.R. Jia, B. Cheng, Z.W. Zhao, F. Lu, and G.L. Wu, Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-review, Adv. Compos. Hybrid Mater., 5(2022), No. 3, p. 2440. doi: 10.1007/s42114-022-00458-7
|
[38] |
S. Chen, Y.B. Meng, X.L. Wang, et al., Hollow tubular MnO2/MXene (Ti3C2, Nb2C, and V2C) composites as high-efficiency absorbers with synergistic anticorrosion performance, Carbon, 218(2024), art. No. 118698. doi: 10.1016/j.carbon.2023.118698
|
[39] |
C.J. Li, X. Qian, M.Y. Hao, et al., Outstanding electromagnetic wave absorption performance of polyacrylonitrile-based ultrahigh modulus carbon fibers decorated with CoZn-bimetallic ZIFs, J. Alloys Compd., 950(2023), art. No. 169912. doi: 10.1016/j.jallcom.2023.169912
|
[40] |
S.J. Zhang, Y.X. Pei, Z.W. Zhao, C.L. Guan, and G.L. Wu, Simultaneous manipulation of polarization relaxation and conductivity toward self-repairing reduced graphene oxide based ternary hybrids for efficient electromagnetic wave absorption, J. Colloid Interface Sci., 630(2023), p. 453. doi: 10.1016/j.jcis.2022.09.149
|
[41] |
L. Kong, S.H. Luo, G.Q. Zhang, et al., Interfacial polarization dominant CNTs/PyC hollow microspheres as a lightweight electromagnetic wave absorbing material, Carbon, 193(2022), p. 216. doi: 10.1016/j.carbon.2022.03.016
|
[42] |
S.J. Zhang, D. Lan, X.L. Chen, et al., Three-dimensional macroscopic absorbents: From synergistic effects to advanced multifunctionalities, Nano Res., 17(2024), No. 3, p. 1952. doi: 10.1007/s12274-023-6120-1
|
[43] |
D. Lan, Y. Hu, M. Wang, Y. Wang, Z. Gao, and Z.R. Jia, Perspective of electromagnetic wave absorbing materials with continuously tunable effective absorption frequency bands, Compos. Commun., 50(2024), art. No. 101993. doi: 10.1016/j.coco.2024.101993
|
[44] |
D. Lan, H.J. Zhou, and H.J. Wu, A polymer sponge with dual absorption of mechanical and electromagnetic energy, J. Colloid Interface Sci., 633(2023), p. 92. doi: 10.1016/j.jcis.2022.11.102
|
[45] |
Y.C. Wang, W. Zhou, G.L. Zeng, et al., Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers, Carbon, 175(2021), p. 233. doi: 10.1016/j.carbon.2021.01.001
|
[46] |
D. Lan, Y. Wang, Y.Y. Wang, et al., Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline, J. Colloid Interface Sci., 651(2023), p. 494. doi: 10.1016/j.jcis.2023.08.019
|
[47] |
R. Jiang, Y.Q. Wang, J.Y. Wang, Q.C. He, and G.L. Wu, Controlled formation of multiple core–shell structures in metal–organic frame materials for efficient microwave absorption, J. Colloid Interface Sci., 648(2023), p. 25. doi: 10.1016/j.jcis.2023.05.197
|
[48] |
T.T. Cheng, Y.Y. Guo, Y.X. Xie, et al., Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance, Carbon, 206(2023), p. 181. doi: 10.1016/j.carbon.2023.02.052
|
[49] |
Y. Liu, X. Ren, X. Zhou, et al., Defect design and vacancy engineering of NiCo2Se4 spinel composite for excellent electromagnetic wave absorption, Ceram. Int., 2024. doi: 10.1016/j.ceramint.2024.09.016.
|
[50] |
D. Wu, J. Jiang, S.L. Deng, Q.C. He, and Y.Q. Wang, Rational construction of mushroom-like Ni@N-doped carbon tubes composites with enhanced electromagnetic wave absorption, J. Alloys Compd., 963(2023), art. No. 171230. doi: 10.1016/j.jallcom.2023.171230
|
[51] |
J.X. Zhou, D. Lan, F. Zhang, et al., Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band, Small, 19(2023), No. 52, art. No. 2304932. doi: 10.1002/smll.202304932
|
[52] |
S.L. Deng, J. Jiang, D. Wu, Q.C. He, and Y.Q. Wang, Three-dimensional conductive network constructed by in situ preparation of sea urchin-like NiFe2O4 in expanded graphite for efficient microwave absorption, J. Colloid Interface Sci., 650(2023), p. 710. doi: 10.1016/j.jcis.2023.07.003
|
[53] |
X.L. Chen, F. Zhang, D. Lan, et al., State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: From the perspective of nitrogen source, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 220. doi: 10.1007/s42114-023-00792-4
|
[54] |
S.J. Zhang, D. Lan, J.J. Zheng, et al., Perspectives of nitrogen-doped carbons for electromagnetic wave absorption, Carbon, 221(2024), art. No. 118925. doi: 10.1016/j.carbon.2024.118925
|
[55] |
W.H. Huang, X.X. Zhang, Y.N. Zhao, J. Zhang, and P.B. Liu, Hollow N-doped carbon polyhedra embedded Co and Mo2C nanoparticles for high-efficiency and wideband microwave absorption, Carbon, 167(2020), p. 19. doi: 10.1016/j.carbon.2020.05.073
|
[56] |
Y. Zhang, X.H. Liu, Z.Q. Guo, et al., MXene@Co hollow spheres structure boosts interfacial polarization for broadband electromagnetic wave absorption, J. Mater. Sci. Technol., 176(2024), p. 167. doi: 10.1016/j.jmst.2023.07.061
|
[57] |
P. Miao, Z. Yu, W.X. Chen, et al., Synergetic dielectric and magnetic losses of a core–shell Co/MnO/C nano complex toward highly efficient microwave absorption, Inorg. Chem., 61(2022), No. 3, p. 1787. doi: 10.1021/acs.inorgchem.1c03749
|
[58] |
Y.M. Luo, P.F. Yin, G.L. Wu, et al., Porous carbon sphere decorated with Co/Ni nanoparticles for strong and broadband electromagnetic dissipation, Carbon, 197(2022), p. 389. doi: 10.1016/j.carbon.2022.06.084
|
[59] |
Z.H. Zhou, Q.Q. Zhu, Y. Liu, Y. Zhang, Z.R. Jia, and G.L. Wu, Construction of self-assembly based tunable absorber: Lightweight, hydrophobic and self-cleaning properties, Nanomicro Lett., 15(2023), No. 1, art. No. 137.
|
[60] |
J.X. Xiao, X.S. Qi, X. Gong, et al., Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M = Mn, Ni, and Zn) nanocomposites by defect and interface engineering, J. Mater. Sci. Technol., 139(2023), p. 137. doi: 10.1016/j.jmst.2022.08.022
|
[61] |
J.Y. Wang, Y.Q. Wang, R. Jiang, S.S. Chen, Q.C. He, and G.L. Wu, Self-assembly of submillimeter porous structure on metal–organic framework to construct heterogeneous interface for controlling microwave absorption, Mater. Today Phys., 35(2023), art. No. 101126. doi: 10.1016/j.mtphys.2023.101126
|
[62] |
T.B. Zhao, Z.R. Jia, J.K. Liu, Y. Zhang, G.L. Wu, and P.F. Yin, Multiphase interfacial regulation based on hierarchical porous molybdenum selenide to build anticorrosive and multiband tailorable absorbers, Nano Micro Lett., 16(2023), No. 1, art. No. 6.
|
[63] |
P.F. Yin, Y.M. Luo, D. Lan, et al., Structural engineering of porous biochar loaded with ferromagnetic/anti-ferromagnetic NiCo2O4/CoO for excellent electromagnetic dissipation with flexible and self-cleaning properties, J. Mater. Sci. Technol., 180(2024), p. 12. doi: 10.1016/j.jmst.2023.08.057
|
[64] |
J. Jiang, D. Lan, Y. Li, et al., Construction of spherical heterogeneous interface on ZnFe2O4@C composite nanofibers for highly efficient microwave absorption, Ceram. Int., 50(2024), p. 38331. doi: 10.1016/j.ceramint.2024.07.197
|
[65] |
J.J. Li, Q.Q. Zhu, J.H. Zhu, et al., Inimitable 3D pyrolytic branched hollow architecture with multi-scale conductive network for microwave absorption, J. Mater. Sci. Technol., 173(2024), p. 170. doi: 10.1016/j.jmst.2023.06.066
|
[66] |
Y. Han, M.J. Han, T.B. Zhao, et al., Design of morphology-controlled cobalt-based spinel oxides for efficient X-band microwave absorption, Mater. Res. Bull., 172(2024), art. No. 112670. doi: 10.1016/j.materresbull.2023.112670
|
[67] |
L.Y. Yu, Q.Q. Zhu, Z.Q. Guo, Y.H. Cheng, Z.R. Jia, and G.L. Wu, Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures, J. Mater. Sci. Technol., 170(2024), p. 129. doi: 10.1016/j.jmst.2023.06.024
|
[68] |
Q.F. Ban, Y. Li, L.W. Li, et al., Amorphous carbon engineering of hierarchical carbonaceous nanocomposites toward boosted dielectric polarization for electromagnetic wave absorption, Carbon, 201(2023), p. 1011. doi: 10.1016/j.carbon.2022.10.017
|
[69] |
X.L. Cao, D. Lan, Y. Zhang, Z.R. Jia, G.L. Wu, and P.F. Yin, Construction of three-dimensional conductive network and heterogeneous interfaces via different ratio for tunable microwave absorption, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 187. doi: 10.1007/s42114-023-00763-9
|
[70] |
S. Zhang, X.H. Liu, C.Y. Jia, et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics, Nano Micro Lett., 15(2023), No. 1, art. No. 204. doi: 10.1007/s40820-023-01179-2
|
[71] |
T.B. Zhao, T.T. Zheng, D. Lan, et al., Self-assembly tungsten selenide hybrid ternary MOF derived magnetic alloys via multi-polarization to boost microwave absorption, Nano Res., 17(2024), No. 3, p. 1625. doi: 10.1007/s12274-023-6160-6
|
[72] |
S. Zhang, Z.R. Jia, Y. Zhang, and G.L. Wu, Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers, Nano Res., 16(2023), No. 2, p. 3395.
|
[73] |
P.F. Yin, L.M. Zhang, J. Wang, X. Feng, J.W. Dai, and Y.T. Tang, Facile preparation of cotton-derived carbon fibers loaded with hollow Fe3O4 and CoFe NPs for significant low-frequency electromagnetic absorption, Powder Technol., 380(2021), p. 134. doi: 10.1016/j.powtec.2020.11.044
|
[74] |
X. Feng, P.F. Yin, L.M. Zhang, et al., Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 559. doi: 10.1007/s12613-022-2488-2
|
[75] |
H.Y. Wang and D.M. Zhu, Design of radar absorbing structure using SiCf/epoxy composites for X band frequency range, Ind. Eng. Chem. Res., 57(2018), No. 6, p. 2139. doi: 10.1021/acs.iecr.7b04905
|
[76] |
A.L. Feng, D. Lan, J.K. Liu, G.L. Wu, and Z.R. Jia, Dual strategy of A-site ion substitution and self-assembled MoS2 wrapping to boost permittivity for reinforced microwave absorption performance, J. Mater. Sci. Technol., 180(2024), p. 1. doi: 10.1016/j.jmst.2023.08.060
|
[77] |
P.F. Yin, Y. Deng, L.M. Zhang, et al., Facile synthesis and microwave absorption investigation of activated carbon@Fe3O4 composites in the low frequency band, RSC Adv., 8(2018), No. 41, p. 23048. doi: 10.1039/C8RA04141E
|
[78] |
J.X. Zhou, X.M. Huang, D. Lan, et al., Polymorphic cerium-based Prussian blue derivatives with in situ growing CNT/Co heterojunctions for enhanced microwave absorption via polarization and magnetization, Nano Res., 17(2024), No. 3, p. 2050. doi: 10.1007/s12274-023-6216-7
|
[79] |
Z.G. Gao, K. Yang, Z.H. Zhao, et al., Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 405. doi: 10.1007/s12613-022-2555-8
|
[80] |
L.Y. Yu, D. Lan, Z.Q. Guo, et al., Multi-level hollow sphere rich in heterojunctions with dual function: Efficient microwave absorption and antiseptic, J. Mater. Sci. Technol., 189(2024), p. 155. doi: 10.1016/j.jmst.2024.01.004
|
[81] |
Y. He, Q. Su, D. Liu, et al., Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance, Chem. Eng. J., 491(2024), p. 152041. doi: 10.1016/j.cej.2024.152041
|
[82] |
X.X. Luo, K.K. Zhang, Y.Y. Zhou, H.J. Wu, and H. Xie, In situ construction of Fe3Al@Al2O3 core–shell particles with excellent electromagnetic absorption, J. Colloid Interface Sci., 611(2022), p. 306. doi: 10.1016/j.jcis.2021.12.084
|
[83] |
J.R. Zhao, H. Wang, Y. Li, Z. Wang, C.Q. Fang, and P.B. Liu, Construction of self-assembled bilayer core–shell V2O3 microspheres as absorber with superior microwave absorption performance, J. Colloid Interface Sci., 639(2023), p. 68. doi: 10.1016/j.jcis.2023.02.059
|
[84] |
Y.L. Pan, D. Lan, Z.R. Jia, et al., Multi-mode tunable electromagnetic wave absorber based on hollow nano-cage structure and self-anticorrosion performance, Adv. Compos. Hybrid Mater., 7(2024), No. 2, art. No. 40. doi: 10.1007/s42114-024-00851-4
|
[85] |
J.W. Wen, X.X. Li, G. Chen, Z.N. Wang, X.J. Zhou, and H.J. Wu, Controllable adjustment of cavity of core-shelled Co3O4@NiCo2O4 composites via facile etching and deposition for electromagnetic wave absorption, J. Colloid Interface Sci., 594(2021), p. 424. doi: 10.1016/j.jcis.2021.03.056
|
[86] |
Z.H. Zhou, D. Lan, J.W. Ren, et al., Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption, J. Mater. Sci. Technol., 185(2024), p. 165. doi: 10.1016/j.jmst.2023.11.010
|
[87] |
W.D. Zhang, X. Zhang, Q. Zhu, Y. Zheng, L.F. Liotta, and H.J. Wu, High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber, J. Colloid Interface Sci., 586(2021), p. 457. doi: 10.1016/j.jcis.2020.10.109
|
[88] |
X. Su, J. Wang, T. Liu, et al., Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement, Adv. Funct. Mater., 24(2024), art. No. 2403397.
|
[89] |
L. Kong, S.Y. Zhang, Y.J. Liu, et al., Hierarchical architecture bioinspired CNTs/CNF electromagnetic wave absorbing materials, Carbon, 207(2023), p. 198. doi: 10.1016/j.carbon.2023.03.024
|
[90] |
B. Shi, H.S. Liang, Z.J. Xie, Q. Chang, and H.J. Wu, Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1388. doi: 10.1007/s12613-023-2599-4
|
[91] |
X. Su, Y. Zhang, J. Wang, and Y. Liu, Enhanced electromagnetic wave absorption and mechanical performances of graphite nanosheet/ PVDF foams via ice dissolution and normal pressure drying, J. Mater. Chem. C, 12(2024), p. 7775. doi: 10.1039/D4TC00929K
|