留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(13)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  101
  • HTML全文浏览量:  48
  • PDF下载量:  16
  • 被引次数: 0
Zhongliang Wangand Yanping Bao, New steelmaking process based on clean deoxidation technology, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2878-8
Cite this article as:
Zhongliang Wangand Yanping Bao, New steelmaking process based on clean deoxidation technology, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2878-8
引用本文 PDF XML SpringerLink
研究论文

基于洁净化脱氧技术的炼钢新工艺


  • 通讯作者:

    包燕平    E-mail: baoyp@ustb.edu.cn

文章亮点

  • (1) 洁净化脱氧技术为高品质洁净钢生产提供了新的思路。
  • (2) 从源头消除氧化物夹杂生成,减少脱氧合金消耗,降低生产过程碳排放。
  • (3) 洁净化脱氧在实际应用中可以根据钢种需求灵活选择脱氧剂。
  • 在现代长流程炼钢生产中,高炉以煤粉和焦炭等还原铁矿石,生成碳饱和的铁水。转炉以铁水和废钢为原料吹入大量氧气实现脱碳、脱磷和升温,获得氧含量较高的钢液。精炼工序必须加入铁合金脱除初炼钢液中过量氧。但该工艺会使加入钢液的脱氧剂与氧结合形成大量无法完全去除的氧化物夹杂,而且需要消耗大量的脱氧合金,增加了钢铁生产流程的碳排放量。为解决这些问题,本课题组经过多年的研究工作,已经形成了包括:钢液碳脱氧、钢液氢脱氧、废弃塑料脱氧等系列洁净化脱氧技术。该技术已经在实验室中进行了多次热态实验,并在非铝脱氧轴承钢的工业生产中得到了应用,均取得了良好的效果。本研究通过热力学计算和实验室热态实验验证了碳在常压和真空下的脱氧限度,证明了氢气也具有将钢液中全氧含量降低至10×10−6以下的能力,分析了聚乙烯脱氧机理和消耗量。实验室热态实验表明采用洁净化脱氧技术后,轴承钢氧含量能够控制在6.3×10−6,夹杂物数量密度比铝脱氧轴承钢减少74.73%。齿轮钢氧含量能够达到7.7×10−6,夹杂物数量密度降低了54.49%,且基本不含5μm以上大尺寸夹杂。高速钢全氧含量可以降低到仅为3.7×10−6。工业生产实践进一步证明了在终脱氧阶段采用洁净化脱氧技术的非铝脱氧轴承钢中氧含量能够降低到8×10−6以下,并且其氧化物夹杂成分以硅酸盐类为主还有少量的尖晶石及钙铝酸盐。
  • Research Article

    New steelmaking process based on clean deoxidation technology

    + Author Affiliations
    • After the converter steelmaking process, a considerable number of ferroalloys are needed to remove dissolved oxygen from the molten steel, but it also forms a lot of oxide inclusions that cannot be completely removed. At the same time, it increases the carbon emissions in the steel production process. After years of research, our team have developed a series of clean deoxidation technologies, including carbon deoxidation, hydrogen deoxidation, and waste plastic deoxidation of molten steel to address the aforementioned issues. In this study, thermodynamic calculations and laboratory experiments were employed in this study to verify that carbon and hydrogen can reduce the total oxygen content in the molten steel melt to below 5 × 10−6 and 10 × 10−6, respectively. An analysis of the deoxidation mechanisms and effects of polyethylene and polypropylene was also conducted. In addition, the applications of carbon deoxidation technology in different steels with the hot-state experiment and industrial production were discussed carefully. The experimental results demonstrate that the implementation of carbon deoxidation technology effectively controlled the oxygen content of bearing steel at 6.3 × 10−6, lowering the inclusion number density by 74.73% compared to aluminum deoxidized bearing steel. Moreover, this technology can reduce the oxygen content in gear steel to 7.7 × 10−6 and achieve a 54.49% reduction of inclusion number density, with almost no inclusions larger than 5 μm, from the average level of industry gear steels, and Furthermore, it enables M2 high-speed steel to obtained a total oxygen content as low as 3.7 × 10−6. In industrial production practice, carbon deoxidation technique was applied in the final deoxidation stage for non-aluminum deoxidized bearing steel, and it yielded excellent results: the oxygen content was reduced to below 8 × 10−6 and the oxide inclusions in the steel mainly consist of silicates, along with small amounts of spinel and calcium aluminate.
    • loading
    • [1]
      R.Y. Yin, Review on the study of metallurgical process engineering, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1253. doi: 10.1007/s12613-020-2220-z
      [2]
      C.M. Tang, Z.Q. Guo, J. Pan, et al., Current situation of carbon emissions and countermeasures in China’s ironmaking industry, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1633. doi: 10.1007/s12613-023-2632-7
      [3]
      Y.J. Wang, H.B. Zuo, and J. Zhao, Recent progress and development of ironmaking in China as of 2019: An overview, Ironmaking Steelmaking., 47(2020), No. 6, p. 640. doi: 10.1080/03019233.2020.1794471
      [4]
      Z.L. Wang and Y.P. Bao, Development and prospects of molten steel deoxidation in steelmaking process, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 18. doi: 10.1007/s12613-023-2740-4
      [5]
      M. Lv, R. Zhu, and L.Z. Yang, High efficiency dephosphorization by mixed injection during steelmaking process, Steel Res. Int., 90(2019), No. 3, art. No. 1800454. doi: 10.1002/srin.201800454
      [6]
      J. Guo, S.S. Cheng, and H.J. Guo, Thermodynamics and industrial trial on increasing the carbon content at the BOF endpoint to produce ultra-low carbon IF steel by BOF–RH–CSP process, High Temp. Mater. Process., 38(2019), No. 2019, p. 822. doi: 10.1515/htmp-2019-0054
      [7]
      Y.Q. Ji, C.Y. Liu, H.X. Yu, X.X. Deng, F.X. Huang, and X.H. Wang, Oxygen transfer phenomenon between slag and molten steel for production of IF steel, J. Iron Steel Res. Int., 27(2020), No. 4, p. 402. doi: 10.1007/s42243-019-00285-z
      [8]
      P.Y. Dong, S.G. Zheng, and M.Y. Zhu, Numerical study on gas–metal–slag interaction with single-flow postcombustion oxygen lance in the steelmaking process of a top-blown converter, JOM, 74(2022), No. 4, p. 1509. doi: 10.1007/s11837-021-05147-2
      [9]
      R.Y. Chen and W.Y.D. Yeun, Review of the high-temperature oxidation of iron and carbon steels in air or oxygen, Oxid. Met., 59(2003), No. 5-6, p. 433.
      [10]
      D. Kalisz, P. Migas, M. Karbowniczek, M. Moskal, and A. Hornik, Influence of selected deoxidizers on chemical composition of molten inclusions in liquid steel, J. Mater. Eng. Perform., 29(2020), No. 3, p. 1479. doi: 10.1007/s11665-019-04493-2
      [11]
      W. Wang, H.J. Liu, C.C. Zhu, P.T. Wei, and W. Wu, Micromechanical analysis of gear fatigue-ratcheting damage considering the phase state and inclusion, Tribol. Int., 136(2019), p. 182. doi: 10.1016/j.triboint.2019.03.040
      [12]
      A. Mehralizadeh, S. Reza Shabanian, and G. Bakeri, Effect of modified surfaces on bubble dynamics and pool boiling heat transfer enhancement: A review, Therm. Sci. Eng. Prog., 15(2020), art. No. 100451. doi: 10.1016/j.tsep.2019.100451
      [13]
      G.F. Huff, G.R. Bailey, and J.H. Richards, Sampling of liquid steel for dissolved oxygen: With discussion, JOM, 4(1952), No. 11, p. 1162. doi: 10.1007/BF03398167
      [14]
      Z.Y. Deng, M.Y. Zhu, and S.C. Du, Effect of refractory on nonmetallic inclusions in Al-killed steel, Metall. Mater. Trans. B, 47(2016), No. 5, p. 3158. doi: 10.1007/s11663-016-0746-2
      [15]
      C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, and H. Ren, Assessment of oxygen control and its effect on inclusion characteristics during electroslag remelting of die steel, Steel Res. Int., 83(2012), No. 5, p. 472. doi: 10.1002/srin.201100200
      [16]
      G.H. Zhang and K.C. Chou, Deoxidation of molten steel by aluminum, J. Iron Steel Res. Int., 22(2015), No. 10, p. 905. doi: 10.1016/S1006-706X(15)30088-1
      [17]
      S.G. Jansto, MicroNiobium alloy approach in medium and high carbon steel bar, plate and sheet products, Metall. Mater. Trans. B, 45(2014), No. 2, p. 438. doi: 10.1007/s11663-013-9837-5
      [18]
      H.B. Yin, H. Shibata, T. Emi, and M. Suzuki, “In-situ” observation of collision, agglomeration and cluster formation of alumina inclusion particles on steel melts, ISIJ Int., 37(1997), No. 10, p. 936. doi: 10.2355/isijinternational.37.936
      [19]
      S.K. Choudhary and A. Ghosh, Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel, ISIJ Int., 49(2009), No. 12, p. 1819. doi: 10.2355/isijinternational.49.1819
      [20]
      W. Xiao, M. Wang, and Y.P. Bao, The research of low-oxygen control and oxygen behavior during RH process in silicon-deoxidization bearing steel, Metals, 9(2019), No. 8, art. No. 812. doi: 10.3390/met9080812
      [21]
      E.S. Alley and R.W. Neu, Microstructure-sensitive modeling of rolling contact fatigue, Int. J. Fatigue, 32(2010), No. 5, p. 841. doi: 10.1016/j.ijfatigue.2009.07.012
      [22]
      Z.L. Wang, Y.P. Bao, C. Gu, W. Xiao, Y. Liu, and Y.S. Huang, Key metallurgical technology for high-quality bearing steel production based on the nonaluminum deoxidation process, Chin. J. Eng., 44(2022), No. 9, p. 1607.
      [23]
      C. Gu, Y.P. Bao, P. Gan, J.H. Lian, and S. Münstermann, An experimental study on the impact of deoxidation methods on the fatigue properties of bearing steels, Steel Res. Int., 89(2018), No. 9, art. No. 1800129. doi: 10.1002/srin.201800129
      [24]
      L. Cao, L.G. Zhu, and Z.H. Guo, Research status of inclusions in bearing steel and discussion on non-alloy deoxidation process, J. Iron Steel Res. Int., 30(2023), No. 1, p. 1. doi: 10.1007/s42243-022-00849-6
      [25]
      Y. Wang, A. Karasev, J.H. Park, and P.G. Jönsson, No. -metallic inclusions in different ferroalloys and their effect on the steel quality: A review, Metall. Mater. Trans. B, 52(2021), No. 5, p. 2892. doi: 10.1007/s11663-021-02259-7
      [26]
      D. Roy, P.C. Pistorius, and R.J. Fruehan, Effect of silicon on the desulfurization of Al-killed steels: Part II. experimental results and plant trials, Metall. Mater. Trans. B, 44(2013), No. 5, p. 1095. doi: 10.1007/s11663-013-9888-7
      [27]
      N.A. Gokcen and J. Chipman, Aluminum-oxygen equilibrium in liquid iron, JOM, 5(1953), No. 2, p. 173. doi: 10.1007/BF03397469
      [28]
      N.A. Gokcen and J. Chipman, Silicon-oxygen equilibrium in liquid iron, JOM, 4(1952), No. 2, p. 171. doi: 10.1007/BF03397667
      [29]
      N. Rimbert, L. Claudotte, P. Gardin, and J. Lehmann, Modeling the dynamics of precipitation and agglomeration of oxide inclusions in liquid steel, Ind. Eng. Chem. Res., 53(2014), No. 20, p. 8630. doi: 10.1021/ie403991e
      [30]
      M.N. Dastur and J. Chipman, Equilibrium in the reaction of hydrogen with oxygen in liquid iron, JOM, 1(1949), No. 8, p. 441. doi: 10.1007/BF03398377
      [31]
      W. Xing, Study on Deoxidation by Hydrogen and Natural Gas in Molten Steel [Dissertation], Wuhan University of Science and Technology, Wuhan, 2009, p. 18.
      [32]
      X.D. Mao, P. Garg, X.J. Hu, et al., Kinetic analysis of iron ore powder reaction with hydrogen–carbon monoxide, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1882. doi: 10.1007/s12613-022-2512-6
      [33]
      L. Cabernard, S. Pfister, C. Oberschelp, and S. Hellweg, Growing environmental footprint of plastics driven by coal combustion, Nat. Sustain., 5(2022), p. 139.
      [34]
      Q.J. Gao, G.P. Zhang, H.Y. Zheng, X. Jiang, and F.M. Shen, Combustion performance of pulverized coal and corresponding kinetics study after adding the additives of Fe2O3 and CaO, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 314. doi: 10.1007/s12613-022-2432-5
      [35]
      C.S. Psomopoulos, K. Kiskira, K. Kalkanis, H.C. Leligou, and N.J. Themelis, The role of energy recovery from wastes in the decarbonization efforts of the EU power sector, IET Renewable Power Gener., 16(2022), No. 1, p. 48. doi: 10.1049/rpg2.12315
      [36]
      K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, and E.C. Santos, Study of rolling contact fatigue of bearing steels in relation to various oxide inclusions, Mater. Des., 32(2011), No. 3, p. 1605. doi: 10.1016/j.matdes.2010.08.052
      [37]
      P.F.F. Walker, Improving the reliability of highly loaded rolling bearings: The effect of upstream processing on inclusions, Mater. Sci. Technol., 30(2014), No. 4, p. 385. doi: 10.1179/1743284713Y.0000000491
      [38]
      B.H. Yoon, K.H. Heo, J.S. Kim, and H.S. Sohn, Improvement of steel cleanliness by controlling slag composition, Ironmaking Steelmaking., 29(2002), No. 3, p. 214. doi: 10.1179/030192302225004160

    Catalog


    • /

      返回文章
      返回