Cite this article as: |
Jianghao Wen, Di Lan, Yiqun Wang, Lianggui Ren, Ailing Feng, Zirui Jia, and Guanglei Wu, Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1701-1712. https://doi.org/10.1007/s12613-024-2881-0 |
王益群 E-mail: wangyiqun17@cdut.edu.cn
吴广磊 E-mail: wuguanglei@qdu.edu.cn
s12613-024-2881-0.docx |
[1] |
L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core−shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
|
[2] |
L. Kong, S.Y. Zhang, Y.J. Liu, H.L. Xu, X.M. Fan, and J.F. Huang, Flexible CNTs/CNF−WPU aerogel for smart electromagnetic wave absorbing with tuning effective absorption bandwidth, Carbon, 207(2023), p. 13. doi: 10.1016/j.carbon.2023.02.067
|
[3] |
M.T. Qiao, Y.R. Tian, J.X. Li, et al., Core−shell Fe3O4@SnO2 nanochains toward the application of radar-infrared-visible compatible stealth, J. Colloid Interface Sci., 609(2022), p. 330. doi: 10.1016/j.jcis.2021.12.012
|
[4] |
C. Zhang, Y.T. He, Q.W. Song, et al., High performance microwave absorption of light weight and porous non-carbon-based polymeric monoliths via a gel emulsion template, Polym. Chem., 13(2022), No. 12, p. 1672. doi: 10.1039/D2PY00002D
|
[5] |
X. Li, D.M. Xu, D. Zhou, et al., Magnetic array vertically anchored on flexible carbon cloth with “magical angle” for the increased effective absorption bandwidth and improved reflection loss simultaneously, Carbon, 210(2023), art. No. 118046. doi: 10.1016/j.carbon.2023.118046
|
[6] |
T.B. Zhao, Z.R. Jia, Y. Zhang, and G.L. Wu, Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption, Small, 19(2023), No. 6, art. No. 2206323. doi: 10.1002/smll.202206323
|
[7] |
X.L. Cao, D. Lan, Y. Zhang, Z.R. Jia, G.L. Wu, and P.F. Yin, Construction of three-dimensional conductive network and heterogeneous interfaces via different ratio for tunable microwave absorption, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 187. doi: 10.1007/s42114-023-00763-9
|
[8] |
J. Yan, Q. Zheng, S.P. Wang, et al., Multifunctional organic-inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices, Adv. Mater., 35(2023), No. 25, art. No. 2300015. doi: 10.1002/adma.202300015
|
[9] |
Z. Zhang, H.Q. Zhao, W.H. Gu, L.J. Yang, and B.S. Zhang, A biomass derived porous carbon for broadband and lightweight microwave absorption, Sci. Rep., 9(2019), No. 1, art. No. 18617. doi: 10.1038/s41598-019-54104-2
|
[10] |
Z.Y. Shen, D. Lan, Y. Cong, Y.Y. Lian, N.N. Wu, and Z.R. Jia, Tailored heterogeneous interface based on porous hollow In−Co−C nanorods to construct adjustable multi-band microwave absorber, J. Mater. Sci. Technol., 181(2024), p. 128. doi: 10.1016/j.jmst.2023.10.007
|
[11] |
Z.Y. Tong, Z.J. Liao, Y.Y. Liu, et al., Hierarchical Fe3O4/Fe@C@MoS2 core−shell nanofibers for efficient microwave absorption, Carbon, 179(2021), p. 646. doi: 10.1016/j.carbon.2021.04.051
|
[12] |
Z.H. Zhou, D. Lan, J.W. Ren, et al., Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption, J. Mater. Sci. Technol., 185(2024), p. 165. doi: 10.1016/j.jmst.2023.11.010
|
[13] |
A.L. Feng, D. Lan, J.K. Liu, G.L. Wu, and Z.R. Jia, Dual strategy of A-site ion substitution and self-assembled MoS2 wrapping to boost permittivity for reinforced microwave absorption performance, J. Mater. Sci. Technol., 180(2024), p. 1. doi: 10.1016/j.jmst.2023.08.060
|
[14] |
J.B. Chen, J. Zheng, F. Wang, Q.Q. Huang, and G.B. Ji, Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption, Carbon, 174(2021), p. 509. doi: 10.1016/j.carbon.2020.12.077
|
[15] |
X.L. Chen, F. Zhang, D. Lan, et al., State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: From the perspective of nitrogen source, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 220. doi: 10.1007/s42114-023-00792-4
|
[16] |
Y.J. Wang, Y. Sun, Y. Zong, et al., Carbon nanofibers supported by FeCo nanocrystals as difunctional magnetic/dielectric composites with broadband microwave absorption performance, J. Alloys Compd., 824(2020), art. No. 153980. doi: 10.1016/j.jallcom.2020.153980
|
[17] |
T.B. Zhao, Z.R. Jia, J.K. Liu, Y. Zhang, G.L. Wu, and P.F. Yin, Multiphase interfacial regulation based on hierarchical porous molybdenum selenide to build anticorrosive and multiband tailorable absorbers, Nano-Micro Lett., 16(2023), No. 1, art. No. 6.
|
[18] |
Z.C. Wu, K. Tian, T. Huang, et al., Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance, ACS Appl. Mater. Interfaces, 10(2018), No. 13, p. 11108. doi: 10.1021/acsami.7b17264
|
[19] |
B. Zhao, Y. Li, H.Y. Ji, et al., Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption, Carbon, 176(2021), p. 411. doi: 10.1016/j.carbon.2021.01.136
|
[20] |
T.B. Zhao, T.T. Zheng, D. Lan, et al., Self-assembly tungsten selenide hybrid ternary MOF derived magnetic alloys via multi-polarization to boost microwave absorption, Nano Res., 17(2024), No. 3, p. 1625. doi: 10.1007/s12274-023-6160-6
|
[21] |
Z.H. Zhou, X.F. Zhou, D. Lan, et al., Modulation engineering of electromagnetic wave absorption performance of layered double hydroxides derived hollow metal carbides integrating corrosion protection, Small, 20(2024), No. 8, art. No. 2305849. doi: 10.1002/smll.202305849
|
[22] |
C.X. Wang, B. Wang, X. Cao, et al., 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption, Composites, Part B, 205(2021), art. No. 108529. doi: 10.1016/j.compositesb.2020.108529
|
[23] |
S.J. Zhang, D. Lan, X.L. Chen, et al., Three-dimensional macroscopic absorbents: From synergistic effects to advanced multifunctionalities, Nano Res., 17(2024), No. 3, p. 1952. doi: 10.1007/s12274-023-6120-1
|
[24] |
P.F. Yin, Y.M. Luo, D. Lan, et al., Structural engineering of porous biochar loaded with ferromagnetic/anti-ferromagnetic NiCo2O4/CoO for excellent electromagnetic dissipation with flexible and self-cleaning properties, J. Mater. Sci. Technol., 180(2024), p. 12. doi: 10.1016/j.jmst.2023.08.057
|
[25] |
T.Q. Hou, B.B. Wang, M.L. Ma, et al., Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties, Composites, Part B, 180(2020), art. No. 107577. doi: 10.1016/j.compositesb.2019.107577
|
[26] |
X. Zhong, M.K. He, C.Y. Zhang, Y.Q. Guo, J.W. Hu, and J.W. Gu, Heterostructured BN@Co−C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band, Adv. Funct. Mater., (2024). DOI: 10.1002/adfm.202313544
|
[27] |
T.P. Ying, J. Zhang, X.G. Liu, J.H. Yu, J.Y. Yu, and X.F. Zhang, Corncob-derived hierarchical porous carbon/Ni composites for microwave absorbing application, J. Alloys Compd., 849(2020), art. No. 156662. doi: 10.1016/j.jallcom.2020.156662
|
[28] |
M.K. He, J.W. Hu, H. Yan, et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity, Adv. Funct. Mater., (2024). DOI: 10.1002/adfm.202316691
|
[29] |
J.X. Zhou, X.M. Huang, D. Lan, et al., Polymorphic cerium-based Prussian blue derivatives with in situ growing CNT/Co heterojunctions for enhanced microwave absorption via polarization and magnetization, Nano Res., 17(2024), No. 3, p. 2050. doi: 10.1007/s12274-023-6216-7
|
[30] |
C.H. Wei, L.Z. Shi, M.Q. Li, et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation, J. Mater. Sci. Technol., 175(2024), p. 194. doi: 10.1016/j.jmst.2023.08.020
|
[31] |
D. Wu, Y.Q. Wang, S.L. Deng, D. Lan, Z.N. Xiang, and Q.C. He, Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption, Nano Res., 16(2023), No. 2, p. 1859.
|
[32] |
J.X. Zhou, D. Lan, F. Zhang, et al., Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band, Small, 19(2023), No. 52, art. No. 2304932. doi: 10.1002/smll.202304932
|
[33] |
L.H. Wang, H.T. Guan, J.Q. Hu, et al., Jute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorber, J. Alloys Compd., 803(2019), p. 1119. doi: 10.1016/j.jallcom.2019.06.351
|
[34] |
Y. Zhang, X.H. Liu, Z.Q. Guo, et al., MXene@Co hollow spheres structure boosts interfacial polarization for broadband electromagnetic wave absorption, J. Mater. Sci. Technol., 176(2024), p. 167. doi: 10.1016/j.jmst.2023.07.061
|
[35] |
L.H. Zhuo, Y.L. Cai, D. Shen, et al., Anti-oxidation polyimide-based hybrid foams assembled with bilayer coatings for efficient electromagnetic interference shielding, Chem. Eng. J., 451(2023), art. No. 138808. doi: 10.1016/j.cej.2022.138808
|
[36] |
J.W. Ren, G.Q. Jiang, Z. Wang, et al., Highly thermoconductive and mechanically robust boron nitride/aramid composite dielectric films from non-covalent interfacial engineering, Adv. Compos. Hybrid Mater., 7(2023), No. 1, art. No. 5.
|
[37] |
T.S. Liu, N. Liu, L.X. Gai, et al., Hierarchical carbonaceous composites with dispersed Co species prepared using the inherent nanostructural platform of biomass for enhanced microwave absorption, Microporous Mesoporous Mater., 302(2020), art. No. 110210. doi: 10.1016/j.micromeso.2020.110210
|
[38] |
S.J. Zhang, B. Cheng, Z.G. Gao, et al., Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: an overview of recent advances and prospects, J. Alloys Compd., 893(2022), art. No. 162343. doi: 10.1016/j.jallcom.2021.162343
|
[39] |
Y.N. Gong, D.L. Li, C.Z. Luo, Q. Fu, and C.X. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors, Green Chem., 19(2017), No. 17, p. 4132. doi: 10.1039/C7GC01681F
|
[40] |
T.Q. Hou, Z.R. Jia, A.L. Feng, et al., Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity, J. Mater. Sci. Technol., 68(2021), p. 61. doi: 10.1016/j.jmst.2020.06.046
|
[41] |
X. Wang, H.T. Jiang, K.Y. Yang, A.X. Ju, C.Q. Ma, and X.L. Yu, Carbon fiber enhanced mechanical and electromagnetic absorption properties of magnetic graphene-based film, Thin Solid Films, 674(2019), p. 97. doi: 10.1016/j.tsf.2019.02.009
|
[42] |
Y.X. Han, M.K. He, J.W. Hu, et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band, Nano Res., 16(2023), No. 1, p. 1773. doi: 10.1007/s12274-022-5111-y
|
[43] |
H. Zhao, Y. Cheng, W. Liu, et al., Biomass-derived porous carbon-based nanostructures for microwave absorption, Nano-Micro Lett., 11(2019), No. 1, art. No. 24. doi: 10.1007/s40820-019-0255-3
|
[44] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, and R.C. Che, Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption, Adv. Funct. Mater., 31(2021), No. 27, art. No. 2102812. doi: 10.1002/adfm.202102812
|
[45] |
P.B. Liu, G.Z. Zhang, H.X. Xu, et al., Synergistic dielectric–magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance, Adv. Funct. Mater., 33(2023), No. 13, art. No. 2211298. doi: 10.1002/adfm.202211298
|
[46] |
J.M. Yang, H. Wang, Y.L. Zhang, H.X. Zhang, and J.W. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding, Nano-Micro Lett., 16(2023), No. 1, art. No. 31.
|
[47] |
X.D. Zhou, H.B. Zhang, M.Y. Yuan, et al., Dispersing magnetic nanoparticles into staggered, porous nano-frameworks: weaving and visualizing nanoscale magnetic flux lines for enhanced electromagnetic absorption, Adv. Funct. Mater., (2024). DOI: 10.1002/adfm.202314541
|
[48] |
H.L. Lv, X.D. Zhou, G.L. Wu, U.I. Kara, and X.G. Wang, Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature, J. Mater. Chem. A, 9(2021), No. 35, p. 19710. doi: 10.1039/D1TA02785A
|
[49] |
J. Zhao, Z. Gu, and Q.G. Zhang, Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption, Nano Res., 17(2024), No. 3, p. 1607. doi: 10.1007/s12274-023-6090-3
|
[50] |
S. Chen, Y.B. Meng, X.L. Wang, et al., Hollow tubular MnO2/MXene (Ti3C2, Nb2C, and V2C) composites as high-efficiency absorbers with synergistic anticorrosion performance, Carbon, 218(2024), art. No. 118698. doi: 10.1016/j.carbon.2023.118698
|
[51] |
X.M. Huang, X.H. Liu, Z.R. Jia, B.B. Wang, X.M. Wu, and G.L. Wu, Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1398. doi: 10.1007/s42114-021-00304-2
|
[52] |
Y. Zhang, Z.H. Yang, M. Li, et al., Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption, Chem. Eng. J., 382(2020), art. No. 123039. doi: 10.1016/j.cej.2019.123039
|
[53] |
L.Y. Yu, D. Lan, Z.Q. Guo, et al., Multi-level hollow sphere rich in heterojunctions with dual function: Efficient microwave absorption and antiseptic, J. Mater. Sci. Technol., 189(2024), p. 155. doi: 10.1016/j.jmst.2024.01.004
|
[54] |
H.L. Lv, Y.X. Yao, S.C. Li, et al., Staggered circular nanoporous graphene converts electromagnetic waves into electricity, Nat. Commun., 14(2023), No. 1, art. No. 1982. doi: 10.1038/s41467-023-37436-6
|
[55] |
Z.H. Zhao, L.M. Zhang, and H.J. Wu, Hydro/organo/ionogels: “controllable” electromagnetic wave absorbers, Adv. Mater., 34(2022), No. 43, art. No. 2205376. doi: 10.1002/adma.202205376
|
[56] |
H.L. Lv, Z.H. Yang, B. Liu, et al., A flexible electromagnetic wave-electricity harvester, Nat. Commun., 12(2021), No. 1, art. No. 834. doi: 10.1038/s41467-021-21103-9
|
[57] |
S.J. Zhang, Z.G. Gao, Z.B. Sun, et al., Solid solution strategy for bimetallic metal-polyphenolic networks deriving electromagnetic wave absorbers with regulated heterointerfaces, Appl. Surf. Sci., 611(2023), art. No. 155707. doi: 10.1016/j.apsusc.2022.155707
|
[58] |
H.L. Lv, Y.X. Yao, M.Y. Yuan, et al., Functional nanoporous graphene superlattice, Nat. Commun., 15(2024), No. 1, art. No. 1295. doi: 10.1038/s41467-024-45503-9
|
[59] |
X.K. Fang, K.X. Pang, G. Zhao, et al., Improving the liquid phase exfoliation efficiency of graphene based on the enhanced intermolecular and interfacial interactions, Chem. Eng. J., 480(2024), art. No. 148263. doi: 10.1016/j.cej.2023.148263
|
[60] |
S.J. Zhang, D. Lan, J.J. Zheng, et al., Perspectives of nitrogen-doped carbons for electromagnetic wave absorption, Carbon, 221(2024), art. No. 118925. doi: 10.1016/j.carbon.2024.118925
|
[61] |
C.P. Li, L. Zhang, S. Zhang, et al., Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum, Nano Res., 17(2024), No. 3, p. 1666. doi: 10.1007/s12274-023-6350-2
|
[62] |
Y.L. Pan, D. Lan, Z.R. Jia, et al., Multi-mode tunable electromagnetic wave absorber based on hollow nano-cage structure and self-anticorrosion performance, Adv. Compos. Hybrid Mater., 7 (2024) 40.
|
[63] |
S.J. Zhang, B. Cheng, Z.R. Jia, et al., The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption, Adv. Compos. Hybrid Mater., 5(2022), No. 3, p. 1658. doi: 10.1007/s42114-022-00514-2
|
[64] |
J.J. Li, Q.Q. Zhu, J.H. Zhu, et al., Inimitable 3D pyrolytic branched hollow architecture with multi-scale conductive network for microwave absorption, J. Mater. Sci. Technol., 173(2024), p. 170. doi: 10.1016/j.jmst.2023.06.066
|
[65] |
Y.L. Zhang, K.P. Ruan, K. Zhou, and J.W. Gu, Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding, Adv. Mater., 35(2023), No. 16, art. No. 2211642. doi: 10.1002/adma.202211642
|
[66] |
S. Zhang, X.H. Liu, C.Y. Jia, et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics, Nano-Micro Lett., 15(2023), No. 1, art. No. 204. doi: 10.1007/s40820-023-01179-2
|
[67] |
X. Li, L.M. Yu, W.K. Zhao, et al., Prism-shaped hollow carbon decorated with polyaniline for microwave absorption, Chem. Eng. J., 379(2020), art. No. 122393. doi: 10.1016/j.cej.2019.122393
|
[68] |
J.B. Xi, E.Z. Zhou, Y.J. Liu, et al., Wood-based straightway channel structure for high performance microwave absorption, Carbon, 124(2017), p. 492. doi: 10.1016/j.carbon.2017.07.088
|
[69] |
N.D. Wu, X.G. Liu, C.Y. Zhao, C.Y. Cui, and A.L. Xia, Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules, J. Alloys Compd., 656(2016), p. 628. doi: 10.1016/j.jallcom.2015.10.027
|
[70] |
L. Kong, S.Y. Zhang, Y.J. Liu, et al., Hierarchical architecture bioinspired CNTs/CNF electromagnetic wave absorbing materials, Carbon, 207(2023), p. 198. doi: 10.1016/j.carbon.2023.03.024
|
[71] |
S. Zhang, D. Lan, J. Zheng, et al., Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption, Int. J. Miner. Metall. Mater., (2024). DOI: 10.1007/s12613-024-2875-y
|
[72] |
J.R. Zhao, H. Wang, Y. Li, Z. Wang, C.Q. Fang, and P.B. Liu, Construction of self-assembled bilayer core−shell V2O3 microspheres as absorber with superior microwave absorption performance, J. Colloid Interface Sci., 639(2023), p. 68. doi: 10.1016/j.jcis.2023.02.059
|
[73] |
J.X. Xiao, B.B. Zhan, M.K. He, et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption, Adv. Funct. Mater., (2024). DOI: 10.1002/adfm.202316722
|
[74] |
L.Y. Yu, Q.Q. Zhu, Z.Q. Guo, Y.H. Cheng, Z.R. Jia, and G.L. Wu, Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures, J. Mater. Sci. Technol., 170(2024), p. 129. doi: 10.1016/j.jmst.2023.06.024
|
[75] |
Y. Han, M.J. Han, T.B. Zhao, et al., Design of morphology-controlled cobalt-based spinel oxides for efficient X-band microwave absorption, Mater. Res. Bull., 172(2024), art. No. 112670. doi: 10.1016/j.materresbull.2023.112670
|
[76] |
P.Z. Liu, T.D. Gao, W.J. He, and P.B. Liu, Electrospinning of hierarchical carbon fibers with multi-dimensional magnetic configurations toward prominent microwave absorption, Carbon, 202(2023), p. 244. doi: 10.1016/j.carbon.2022.10.089
|
[77] |
R.S. Li, Q. Gao, H.N. Xing, et al., Lightweight, multifunctional MXene/polymer composites with enhanced electromagnetic wave absorption and high-performance thermal conductivity, Carbon, 183(2021), p. 301. doi: 10.1016/j.carbon.2021.07.029
|
[78] |
F. Zhang, Z.R. Jia, Z. Wang, et al., Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber, Mater. Today Phys., 20(2021), art. No. 100475. doi: 10.1016/j.mtphys.2021.100475
|
[79] |
D. Lan, H.F. Li, M. Wang, et al., Recent advances in construction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials, Mater. Res. Bull., 171(2024), art. No. 112630. doi: 10.1016/j.materresbull.2023.112630
|
[80] |
W. Wang, K. Nan, H. Zheng, Q.W. Li, and Y. Wang, Ion-exchange reaction construction of carbon nanotube-modified CoNi@MoO2/C composite for ultra-intense and broad electromagnetic wave absorption, Carbon, 210(2023), art. No. 118074. doi: 10.1016/j.carbon.2023.118074
|
[81] |
F. Zhang, W. Cui, B.B. Wang, et al., Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities, Composites, Part B, 204(2021), art. No. 108491. doi: 10.1016/j.compositesb.2020.108491
|
[82] |
Z.R. Jia, D. Lan, M. Chang, Y. Han, and G.L. Wu, Heterogeneous interfaces and 3D foam structures synergize to build superior electromagnetic wave absorbers, Mater. Today Phys., 37(2023), art. No. 101215. doi: 10.1016/j.mtphys.2023.101215
|
[83] |
Y.C. Wang, W. Zhou, G.L. Zeng, et al., Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers, Carbon, 175(2021), p. 233. doi: 10.1016/j.carbon.2021.01.001
|
[84] |
S.Q. Yang, L. Tang, H.J. Wei, et al. , In-situ construction of volcanic rock-like structures in Yb2O3 modified reduced graphene oxide and their boosted electromagnetic wave absorbing properties, Carbon, 215(2023), art. No. 118445. doi: 10.1016/j.carbon.2023.118445
|
[85] |
Y.M. Luo, P.F. Yin, G. Wu, et al., Porous carbon sphere decorated with Co/Ni nanoparticles for strong and broadband electromagnetic dissipation, Carbon, 197(2022), p. 389. doi: 10.1016/j.carbon.2022.06.084
|
[86] |
Y.L. Qi, P.F. Yin, L.M. Zhang, et al., Novel microwave absorber of Ni xMn1– xFe2O4/carbonized chaff (x = 0.3, 0.5, and 0.7) based on biomass, ACS Omega, 4(2019), No. 7, p. 12376. doi: 10.1021/acsomega.9b01568
|
[87] |
H.Y. Wang and D.M. Zhu, Design of radar absorbing structure using SiCf/epoxy composites for X band frequency range, Ind. Eng. Chem. Res., 57(2018), No. 6, p. 2139. doi: 10.1021/acs.iecr.7b04905
|
[88] |
Q.F. Ban, Y. Li, L.W. Li, et al., Amorphous carbon engineering of hierarchical carbonaceous nanocomposites toward boosted dielectric polarization for electromagnetic wave absorption, Carbon, 201(2023), p. 1011. doi: 10.1016/j.carbon.2022.10.017
|
[89] |
J.W. Wen, X.X. Li, G. Chen, Z.N. Wang, X.J. Zhou, and H.J. Wu, Controllable adjustment of cavity of core−shelled Co3O4@NiCo2O4 composites via facile etching and deposition for electromagnetic wave absorption, J. Colloid Interface Sci., 594(2021), p. 424. doi: 10.1016/j.jcis.2021.03.056
|
[90] |
X.X. Luo, K.K. Zhang, Y.Y. Zhou, H.J. Wu, and H. Xie, In situ construction of Fe3Al@Al2O3 core−shell particles with excellent electromagnetic absorption, J. Colloid Interface Sci., 611(2022), p. 306. doi: 10.1016/j.jcis.2021.12.084
|
[91] |
W.D. Zhang, X. Zhang, Q. Zhu, Y. Zheng, L.F. Liotta, and H.J. Wu, High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber, J. Colloid Interface Sci., 586(2021), p. 457. doi: 10.1016/j.jcis.2020.10.109
|
[92] |
Z.D. Wang, M.L. Li, B.T. Liu, et al., Enhanced energy storage characteristics of the epoxy film with rigid phenyl-flexible etherified methylene chains, J. Mater. Sci. Technol., 183(2024), p. 12. doi: 10.1016/j.jmst.2023.10.026
|
[93] |
Z.H. Wu, C. Yao, Z.Z. Meng, et al., Biomass-derived crocodile skin-like porous carbon for high-performance microwave absorption, Adv. Sustainable Syst., 6(2022), No. 6, art. No. 2100454. doi: 10.1002/adsu.202100454
|
[94] |
Z.N. Xiang, Y.Q. Wang, X.M. Yin, and Q.H. He, Microwave absorption performance of porous heterogeneous SiC/SiO2 microspheres, Chem. Eng. J., 451(2023), art. No. 138742. doi: 10.1016/j.cej.2022.138742
|
[95] |
Y. Liu, X.H. Liu, E. Xinyu, et al., Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption, J. Mater. Sci. Technol., 103(2022), p. 157. doi: 10.1016/j.jmst.2021.06.034
|