留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 5
May  2024

图(5)

数据统计

分享

计量
  • 文章访问数:  1468
  • HTML全文浏览量:  294
  • PDF下载量:  63
  • 被引次数: 0
Qiuhong Liu, Qing Du, Xiaobin Zhang, Yuan Wu, Andrey A. Rempel, Xiangyang Peng, Xiongjun Liu, Hui Wang, Wenli Song, and Zhaoping Lü, Characterization of local chemical ordering and deformation behavior in high entropy alloys by transmission electron microscopy, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 877-886. https://doi.org/10.1007/s12613-024-2884-x
Cite this article as:
Qiuhong Liu, Qing Du, Xiaobin Zhang, Yuan Wu, Andrey A. Rempel, Xiangyang Peng, Xiongjun Liu, Hui Wang, Wenli Song, and Zhaoping Lü, Characterization of local chemical ordering and deformation behavior in high entropy alloys by transmission electron microscopy, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 877-886. https://doi.org/10.1007/s12613-024-2884-x
引用本文 PDF XML SpringerLink
特约综述

高熵合金局域化学有序及变形机制的透射电子显微学表征


    * 共同第一作者
  • 通讯作者:

    张晓宾    E-mail: zhangxb@ustb.edu.cn

    吕昭平    E-mail: luzp@ustb.edu.cn

文章亮点

  • (1) 系统地总结了高熵合金领域元素合金化和热处理两种方式形成短程有序结构的特点。
  • (2) 综述了表征短程有序结构所运用的先进透射电子显微镜技术。
  • (3) 说明了透射电子显微镜技术在观察和分析短程有序结构对变形机制影响中的作用。
  • (4) 展望了先进透射电子显微镜技术在高熵合金精细表征领域的应用前景。
  • 基于高熵理念而设计的高熵合金具有不同于传统合金的独特的力学性能。近些年的研究表明,高熵合金最重要的特征之一是其具有短程有序结构。然而,短程有序结构具有尺寸小、成分复杂、位置多样的特点,导致其化学成分和结构分析非常困难。同时,如何调控短程有序结构的形成进而改善高熵合金的力学性能也是极大的挑战。透射电子显微镜结合球差校正技术是精准表征材料微观组织结构的强有力工具,应用不同的透射电子显微镜技术不仅可以表征高熵合金中的短程有序结构并揭示其形成机制,而且可以辅助调控高熵合金的性能。基于此,本文综述了近年来先进透射电子显微镜技术在高熵合金短程有序结构表征领域的最新进展,并根据短程有序结构形成方式的不同,对证明短程有序结构存在的表征手段分别进行了总结,阐明了短程有序结构对高熵合金变形机制的影响,最后展望了先进透射电子显微镜技术在高熵合金中的应用前景。
  • Invited Review

    Characterization of local chemical ordering and deformation behavior in high entropy alloys by transmission electron microscopy

    + Author Affiliations
    • Short-range ordering (SRO) is one of the most important structural features of high entropy alloys (HEAs). However, the chemical and structural analyses of SROs are very difficult due to their small size, complexed compositions, and varied locations. Transmission electron microscopy (TEM) as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys. In this short communication, we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs. By using advanced TEM techniques, not only the existence of SROs was confirmed, but also the effect of SROs on the deformation mechanism was clarified. Moreover, the perspective related to application of TEM techniques in HEAs are also discussed.
    • loading
    • [1]
      Y. Zhang, T.T. Zuo, Z. Tang, et al., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1. doi: 10.1016/j.pmatsci.2013.10.001
      [2]
      J.J. Yi, F.Y. Cao, M.Q. Xu, L. Yang, L. Wang, and L. Zeng, Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1231. doi: 10.1007/s12613-020-2214-x
      [3]
      J. Wu, H.G. Zhu, and Z.H. Xie, Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 707. doi: 10.1007/s12613-022-2567-4
      [4]
      N. Xiao, X. Guan, D. Wang, et al., Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1667. doi: 10.1007/s12613-023-2641-6
      [5]
      Z.P. Lu, Z.F. Lei, H.L. Huang, et al., Deformation behavior and toughening of high-entropy alloys, Acta Metall. Sin., 54(2018), No. 11, p. 1553.
      [6]
      Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, High-entropy alloy: Challenges and prospects, Mater. Today, 19(2016), No. 6, p. 349. doi: 10.1016/j.mattod.2015.11.026
      [7]
      D. Saha, E.D. Bøjesen, A.H. Mamakhel, M. Bremholm, and B.B. Iversen, In situ PDF study of the nucleation and growth of intermetallic PtPb nanocrystals, Chemnanomat, 3(2017), No. 7, p. 472. doi: 10.1002/cnma.201700069
      [8]
      S. Maiti and W. Steurer, Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy, Acta Mater., 106(2016), p. 87. doi: 10.1016/j.actamat.2016.01.018
      [9]
      L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.K. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw, Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy, Nat. Commun., 6(2015), art. No. 5964. doi: 10.1038/ncomms6964
      [10]
      D. Han, X.J. Guan, Y. Yan, F. Shi, and X.W. Li, Anomalous recovery of work hardening rate in Cu–Mn alloys with high stacking fault energies under uniaxial compression, Mater. Sci. Eng. A, 743(2019), p. 745. doi: 10.1016/j.msea.2018.11.103
      [11]
      N. Clément, D. Caillard, and J.L. Martin, Heterogeneous deformation of concentrated NiCr F.C.C. alloys: Macroscopic and microscopic behaviour, Acta Metall., 32(1984), No. 6, p. 961. doi: 10.1016/0001-6160(84)90034-8
      [12]
      X.F. Chen, Z.C. Wang, and X.Y. Zhong, Developments of energy-filtered transmission electron microscopy, J. Chin. Electron Microsc. Soc., 37(2018), No. 5, p. 540.
      [13]
      A. Tamm, A. Aabloo, M. Klintenberg, M. Stocks, and A. Caro, Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys, Acta Mater., 99(2015), p. 307. doi: 10.1016/j.actamat.2015.08.015
      [14]
      R.P. Zhang, S.T. Zhao, C. Ophus, et al., Direct imaging of short-range order and its impact on deformation in Ti–6Al, Sci. Adv., 5(2019), No. 12, art. No. eaax2799. doi: 10.1126/sciadv.aax2799
      [15]
      Z.F. Lei, X.J. Liu, Y. Wu, et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563(2018), p. 546. doi: 10.1038/s41586-018-0685-y
      [16]
      E. Antillon, C. Woodward, S.I. Rao, B. Akdim, and T.A. Parthasarathy, Chemical short range order strengthening in a model FCC high entropy alloy, Acta Mater., 190(2020), p. 29. doi: 10.1016/j.actamat.2020.02.041
      [17]
      Q.J. Li, H. Sheng, and E. Ma, Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways, Nat. Commun., 10(2019), No. 1, art. No. 3563. doi: 10.1038/s41467-019-11464-7
      [18]
      W. Guo, W. Dmowski, J.Y. Noh, P. Rack, P.K. Liaw, and T. Egami, Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study, Metall. Mater. Trans. A, 44(2013), No. 5, p. 1994. doi: 10.1007/s11661-012-1474-0
      [19]
      M.Y. Jiao, Z.F. Lei, Y. Wu, et al., Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys, Nat. Commun., 14(2023), No. 1, art. No. 806. doi: 10.1038/s41467-023-36319-0
      [20]
      I. Lazić and E.G.T. Bosch, Chapter three–Analytical review of direct stem imaging techniques for thin samples, [in] P.W. Hawkes, ed., Advances in Imaging and Electron Physics, Volume 199, 2017, p. 75.
      [21]
      I. Lazic, E.G. Bosch, S. Lazar, M. Wirix, and E. Yücelen, Integrated differential phase contrast (iDPC)–Direct phase imaging in STEM for thin samples, Microsc. Microanal., 22(2016), No. S3, p. 36. doi: 10.1017/S1431927616001033
      [22]
      E. Yücelen, I. Lazić, and E.G.T. Bosch, Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution, Sci. Rep., 8(2018), No. 1, art. No. 2676. doi: 10.1038/s41598-018-20377-2
      [23]
      Y. Zhang, W.B. Wang, W.D. Xing, et al., Effect of oxygen interstitial ordering on multiple order parameters in rare earth ferrite, Phys. Rev. Lett., 123(2019), No. 24, art. No. 247601. doi: 10.1103/PhysRevLett.123.247601
      [24]
      Q.Q. Ding, Y. Zhang, X. Chen, et al., Tuning element distribution, structure and properties by composition in high-entropy alloys, Nature, 574(2019), p. 223. doi: 10.1038/s41586-019-1617-1
      [25]
      S. Dasari, A. Sharma, C. Jiang, et al. Srinivasan, and R. Banerjee, Exceptional enhancement of mechanical properties in high-entropy alloys via thermodynamically guided local chemical ordering, Proc. Natl. Acad. Sci. U.S.A., 120(2023), No. 23, art. No. e2211787120. doi: 10.1073/pnas.2211787120
      [26]
      L. Wang, J. Ding, S.S. Chen, et al., Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys, Nat. Mater., 22(2023), No. 8, p. 950. doi: 10.1038/s41563-023-01517-0
      [27]
      X.F. Chen, Q. Wang, Z.Y. Cheng, et al., Direct observation of chemical short-range order in a medium-entropy alloy, Nature, 592(2021), No. 7856, p. 712. doi: 10.1038/s41586-021-03428-z
      [28]
      H.Z. Sha, J.Z. Cui, and R. Yu, Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction, Sci. Adv., 8(2022), No. 19, art. No. eabn2275. doi: 10.1126/sciadv.abn2275
      [29]
      Z. Chen, Y. Jiang, Y.T. Shao, et al., Electron ptychography achieves atomic-resolution limits set by lattice vibrations, Science, 372(2021), No. 6544, p. 826. doi: 10.1126/science.abg2533
      [30]
      C. Liu, J.Z. Cui, Z.Y. Cheng, et al., Direct observation of oxygen atoms taking tetrahedral interstitial sites in medium-entropy body-centered-cubic solutions, Adv. Mater., 35(2023), No. 13, art. No. e2209941. doi: 10.1002/adma.202209941
      [31]
      S. Moniri, Y. Yang, J. Ding, et al., Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys, Nature, 624(2023), No. 7992, p. 564. doi: 10.1038/s41586-023-06785-z
      [32]
      Y. Yang, J.H. Zhou, F. Zhu, et al., Determining the three-dimensional atomic structure of an amorphous solid, Nature, 592(2021), No. 7852, p. 60. doi: 10.1038/s41586-021-03354-0
      [33]
      S. Tang, T.Z. Xin, W.Q. Xu, et al., Precipitation strengthening in an ultralight magnesium alloy, Nat. Commun., 10(2019), No. 1, art. No. 1003. doi: 10.1038/s41467-019-08954-z
      [34]
      Z.P. Xiong, I. Timokhina, and E. Pereloma, Clustering, nano-scale precipitation and strengthening of steels, Prog. Mater. Sci, 118(2021), art. No. 100764. doi: 10.1016/j.pmatsci.2020.100764
      [35]
      X.L. Zhou, Z.Q. Feng, L.L. Zhu, et al., High-pressure strengthening in ultrafine-grained metals, Nature, 579(2020), No. 7797, p. 67. doi: 10.1038/s41586-020-2036-z
      [36]
      J.P. Buban, K. Matsunaga, J. Chen, et al., Grain boundary strengthening in alumina by rare earth impurities, Science, 311(2006), No. 5758, p. 212. doi: 10.1126/science.1119839
      [37]
      H.Y. Lin, P. Hua, K. Huang, Q. Li, and Q.P. Sun, Grain boundary and dislocation strengthening of nanocrystalline NiTi for stable elastocaloric cooling, Scripta Mater., 226(2023), art. No. 115227. doi: 10.1016/j.scriptamat.2022.115227
      [38]
      Z.D. Pan, K. Wu, X.D. Zhao, Y. Lin, and W.K. Zhang, Development of ultra high strength non-oriented silicon steel by dislocation strengthening, Iron Steel, 58(2023), No. 3, p. 111.
      [39]
      M.S. Lucas, G.B. Wilks, L. Mauger, et al., Absence of long-range chemical ordering in equimolar FeCoCrNi, Appl. Phys. Lett., 100(2012), No. 25, art. No. 251907. doi: 10.1063/1.4730327
      [40]
      J.W. Yeh, S.Y. Chang, Y. der Hong, S.K. Chen, and S.J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys., 103(2007), No. 1, p. 41. doi: 10.1016/j.matchemphys.2007.01.003
      [41]
      S.T. Zhao, Z.Z. Li, C.Y. Zhu, et al., Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy, Sci. Adv., 7(2021), No. 5, art. No. eabb3108. doi: 10.1126/sciadv.abb3108
      [42]
      T. Xiong, W.F. Yang, S.J. Zheng, et al., Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1, J. Mater. Sci. Technol., 65(2021), p. 216. doi: 10.1016/j.jmst.2020.04.073
      [43]
      Z.J. Zhang, M.M. Mao, J.W. Wang, et al., Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat. Commun., 6(2015), art. No. 10143. doi: 10.1038/ncomms10143
      [44]
      S.F. Liu, Y. Wu, H.T. Wang, et al., Stacking fault energy of face-centered-cubic high entropy alloys, Intermetallics, 93(2018), p. 269. doi: 10.1016/j.intermet.2017.10.004
      [45]
      Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, and D. Raabe, Design of a twinning-induced plasticity high entropy alloy, Acta Mater., 94(2015), p. 124. doi: 10.1016/j.actamat.2015.04.014
      [46]
      K. Jiang, Q. Zhang, J.G. Li, et al., Abnormal hardening and amorphization in an FCC high entropy alloy under extreme uniaxial tension, Int. J. Plast, 159(2022), art. No. 103463. doi: 10.1016/j.ijplas.2022.103463
      [47]
      G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater., 128(2017), p. 292. doi: 10.1016/j.actamat.2017.02.036
      [48]
      H. Wang, D.K. Chen, X.H. An, et al., Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy, Sci. Adv., 7(2021), No. 14, art. No. eabe3105. doi: 10.1126/sciadv.abe3105
      [49]
      R.M. Niu, X.H. An, L.L. Li, Z.F. Zhang, Y.W. Mai, and X.Z. Liao, Mechanical properties and deformation behaviours of submicron-sized Cu–Al single crystals, Acta Mater., 223(2022), art. No. 117460. doi: 10.1016/j.actamat.2021.117460
      [50]
      J.Q. Ding, J.D. Zuo, Y.Q. Wang, et al., Progress in the local chemical short-range order of multi-principal alloys, Rare Met. Mater. Eng., 52(2023), No. 4, p. 1507.
      [51]
      L.T.W. Smith, Y.Q. Su, S.Z. Xu, A. Hunter, and I.J. Beyerlein, The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy, Int. J. Plast., 134(2020), art. No. 102850. doi: 10.1016/j.ijplas.2020.102850
      [52]
      Y.K. Zhao, J.M. Park, J.I. Jang, and U. Ramamurty, Bimodality of incipient plastic strength in face-centered cubic high-entropy alloys, Acta Mater., 202(2021), p. 124. doi: 10.1016/j.actamat.2020.10.066
      [53]
      D. Han, Z.Y. Wang, Y. Yan, F. Shi, and X.W. Li, A good strength-ductility match in Cu–Mn alloys with high stacking fault energies: Determinant effect of short range ordering, Scripta Mater., 133(2017), p. 59. doi: 10.1016/j.scriptamat.2017.02.010
      [54]
      Y.J. Zhang, D. Han, and X.W. Li, A unique two-stage strength-ductility match in low solid-solution hardening Ni–Cr alloys: Decisive role of short range ordering, Scripta Mater., 178(2020), p. 269. doi: 10.1016/j.scriptamat.2019.11.049
      [55]
      Y.Q. Bu, Y. Wu, Z.F. Lei, et al., Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys, Mater. Today, 46(2021), p. 28. doi: 10.1016/j.mattod.2021.02.022
      [56]
      V. Gerold and H.P. Karnthaler, On the origin of planar slip in f.c.c. alloys, Acta Metall., 37(1989), No. 8, p. 2177. doi: 10.1016/0001-6160(89)90143-0
      [57]
      S.I. Rao, C. Varvenne, C. Woodward, et al., Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy, Acta Mater., 125(2017), p. 311. doi: 10.1016/j.actamat.2016.12.011
      [58]
      Z.F. He, Y.X. Guo, L.F. Sun, et al., Interstitial-driven local chemical order enables ultrastrong face-centered cubic multicomponent alloys, Acta Mater., 243(2023), art. No. 118495. doi: 10.1016/j.actamat.2022.118495
      [59]
      F. Zhang, Y. Wu, H.B. Lou, et al. Polymorphism in a high-entropy alloy, Nat. Commun., 8(2017), art. No. 15687. doi: 10.1038/ncomms15687
      [60]
      J. Ding, Q. Yu, M. Asta, and R.O. Ritchie, Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys, Proc. Natl. Acad. Sci. U.S.A., 115(2018), No. 36, p. 8919. doi: 10.1073/pnas.1808660115
      [61]
      R.P. Zhang, S.T. Zhao, J. Ding, et al., Short-range order and its impact on the CrCoNi medium-entropy alloy, Nature, 581(2020), No. 7808, p. 283. doi: 10.1038/s41586-020-2275-z
      [62]
      Z.C. Xie, W.R. Jian, S.Z. Xu, et al., Phase transition in medium entropy alloy CoCrNi under quasi-isentropic compression, Int. J. Plast., 157(2022), No. 1, art. No. 103389. doi: 10.1016/j.ijplas.2022.103389
      [63]
      F. Walsh, M.W. Zhang, R.O. Ritchie, A.M. Minor, and M. Asta, Extra electron reflections in concentrated alloys do not necessitate short-range order, Nat. Mater., 22(2023), No. 8, p. 926. doi: 10.1038/s41563-023-01570-9
      [64]
      E. Frely, B. Beuneu, A. Barbu, and G. Jaskierowicz, Short and long-range ordering of (Ni0.67Cr0.33)1− xFe x alloys under electron irradiation, MRS Online Proc. Lib., 439(1996), No. 1, p. 373. doi: 10.1557/PROC-439-373
      [65]
      V.V. Sagaradze, I.I. Kositsyna, V.L. Arbuzov, V.A. Shabashov, and Y.I. Filippov, Phase transformations in Fe–Cr alloys upon thermal aging and electron irradiation, Phys. Met. Metall., 92(2001), No. 5, p. 508.
      [66]
      S. Banerjee, In-situ studies on phase transformations under electron irradiation in a high voltage electron microscope, Sadhana, 28(2003), No. 3, p. 799. doi: 10.1007/BF02706460

    Catalog


    • /

      返回文章
      返回