留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 11
Nov.  2024

图(12)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1275
  • HTML全文浏览量:  111
  • PDF下载量:  19
  • 被引次数: 0
Shushuai Wang, Renshu Yang, Yongliang Li, and Zhongwen Yue, Effects of cement content, polypropylene fiber length and dosage on fluidity and mechanical properties of fiber-toughened cemented aeolian sand backfill, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2404-2416. https://doi.org/10.1007/s12613-024-2885-9
Cite this article as:
Shushuai Wang, Renshu Yang, Yongliang Li, and Zhongwen Yue, Effects of cement content, polypropylene fiber length and dosage on fluidity and mechanical properties of fiber-toughened cemented aeolian sand backfill, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2404-2416. https://doi.org/10.1007/s12613-024-2885-9
引用本文 PDF XML SpringerLink
研究论文

水泥含量、聚丙烯纤维长度和掺量对风积沙胶结充填体流动性和力学特性的影响


  • 通讯作者:

    王树帅    E-mail: wsstree@163.com

文章亮点

  • (1) 分析了水泥含量、聚丙烯纤维掺量与长度对风积沙胶结料浆流动性与流变特性的影响
  • (2) 获得了聚丙烯纤维增韧不同水泥含量的风积沙胶结充填体的力学特性
  • (3) 通过DIC和SEM揭示了纤维增韧风积沙胶结充填体的破坏特征和纤维的作用机理
  • (4) 采用响应面法从“单因素–双因素交互作用项–三因素耦合效应”三个层面揭示了水泥与聚丙烯纤维对风积沙胶结充填体强度的影响规律。
  • 利用风积沙进行采空区充填,可以实现煤矿绿色开采与风积沙治理的协调开展。风积沙胶结充填体(Cemented aeolian sand backfill,CASB)具有脆性破坏特征。聚丙烯(Polypropylene,PP)纤维是优良的增韧材料。在分析纤维增韧作用时,还应考虑纤维对料浆输送性能的影响。此外,水泥会影响水化产物、纤维和基质之间的相互作用。本文研究了水泥含量(8wt%、9wt%和10wt%)、PP纤维长度(6、9和12 mm)和掺量(0.05wt%、0.1wt%、0.15wt%、0.2wt%和0.25wt%)对纤维增韧风积沙胶结充填体(Fiber-toughened CASB, FCASB)流动性和力学特性的影响。结果表明,随着上述三个因素的增加,风积沙胶结料浆扩展度减小,流变参数增大。单轴抗压强度(Uniaxial compressive strength,UCS)随水泥含量和纤维长度的增加而增大,随纤维掺量的增加先增大后减小,在纤维掺量为0.15wt%最大。应变随纤维掺量和长度的增加均增大。随着水泥掺量的增加,PP纤维的作用效果更加显著。数字图像相关(Digital image correlation,DIC)系统监测结果表明,纤维的加入可以抑制充填体块体的剥落和裂缝的扩展,降低充填体的应力集中。微观结构测试表明,纤维的作用机制主要涉及纤维与水化产物和基质的相互作用以及纤维的空间分布。在单因素分析的基础上,采用响应面法分析了上述3个因素及其交互作用项对FCASB强度的影响。建立了双因素相互作用项的影响曲面和三因素耦合效应的影响三维散点图。综上所述,获得了水泥和PP纤维作用下风积沙胶结充填材料性能的响应规律,为纤维增韧风积沙充填提供了理论和工程指导。
  • Research Article

    Effects of cement content, polypropylene fiber length and dosage on fluidity and mechanical properties of fiber-toughened cemented aeolian sand backfill

    + Author Affiliations
    • Using aeolian sand (AS) for goaf backfilling allows coordination of green mining and AS control. Cemented AS backfill (CASB) exhibits brittle fracture. Polypropylene (PP) fibers are good toughening materials. When the toughening effect of fibers is analyzed, their influence on the slurry conveying performance should also be considered. Additionally, cement affects the interactions among the hydration products, fibers, and aggregates. In this study, the effects of cement content (8wt%, 9wt%, and 10wt%) and PP fiber length (6, 9, and 12 mm) and dosage (0.05wt%, 0.1wt%, 0.15wt%, 0.2wt%, and 0.25wt%) on fluidity and mechanical properties of the fiber-toughened CASB (FCASB) were analyzed. The results indicated that with increases in the three aforementioned factors, the slump flow decreased, while the rheological parameters increased. Uniaxial compressive strength (UCS) increased with the increase of cement content and fiber length, and with an increase in fiber dosage, it first increased and then decreased. The strain increased with the increase of fiber dosage and length. The effect of PP fibers became more pronounced with the increase of cement content. Digital image correlation (DIC) test results showed that the addition of fibers can restrain the peeling of blocks and the expansion of fissure, and reduce the stress concentration of the FCASB. Scanning electron microscopy (SEM) test indicated that the functional mechanisms of fibers mainly involved the interactions of fibers with the hydration products and matrix and the spatial distribution of fibers. On the basis of single-factor analysis, the response surface method (RSM) was used to analyze the effects of the three aforementioned factors and their interaction terms on the UCS. The influence surface of the two-factor interaction terms and the three-dimensional scatter plot of the three-factor coupling were established. In conclusion, the response law of the FCASB properties under the effects of cement and PP fibers were obtained, which provides theoretical and engineering guidance for FCASB filling.
    • loading
    • [1]
      Y.L. Li, Y.N. Bian, and C.H. Liu, Damage and failure mechanism of basalt fiber-reinforced gangue-cemented backfill under uniaxial compression, Constr. Build. Mater., 400(2023), art. No. 132872. doi: 10.1016/j.conbuildmat.2023.132872
      [2]
      S. Yang, J.Y. Wu, H.W. Jing, et al., Molecular mechanism of fly ash affecting the performance of cemented backfill material, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1560. doi: 10.1007/s12613-023-2658-x
      [3]
      Y.L. Zhao, J.P. Qiu, and Z.Y. Ma, Temperature-dependent rheological, mechanical and hydration properties of cement paste blended with iron tailings, Powder Technol., 381(2021), p. 82. doi: 10.1016/j.powtec.2020.11.062
      [4]
      Y.L. Li, B. Lu, R.S. Yang, et al., Cemented backfilling mining technology with continuous mining and continuous backfilling method for underground coal mine and typical engineering cases, J. China Coal Soc., 47(2022), No. 3, p. 1055.
      [5]
      G.L. Xue, E. Yilmaz, and Y.D. Wang, Progress and prospects of mining with backfill in metal mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1455. doi: 10.1007/s12613-023-2663-0
      [6]
      J.Y. Wu, H.W. Jing, Y. Gao, Q.B. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cement Concrete Compos., 127(2022), art. No. 104408. doi: 10.1016/j.cemconcomp.2022.104408
      [7]
      S.S Wang, Y.L. Li, Q. Li, Z.X. Wang, and Y.X. Wang, Influence of gangue gradation coefficient on the performance of filling material based on Talbol theory, J. Min. Saf. Eng., 39(2022), No. 4, p. 683.
      [8]
      J.Y. Li and J.M. Wang, Comprehensive utilization and environmental risks of coal gangue: A review, J. Cleaner Prod., 239(2019), art. No. 117946. doi: 10.1016/j.jclepro.2019.117946
      [9]
      W.Z. Gu, B.G. Yang, L. Zhu, and M.Y. Zhao, Study on spatial characteristics of gangue slurry filling mining and engineering practice, J. Min. Sci. Technol., 8(2023), No. 3, p. 409.
      [10]
      Q.L. Zhang, Q.S. Chen, and X.M. Wang, Cemented backfilling technology of paste-like based on aeolian sand and tailings, Minerals, 6(2016), No. 4, art. No. 132. doi: 10.3390/min6040132
      [11]
      G.X. Chen, Z.B. Dong, C. Li, et al., Provenance of aeolian sediments in the Ordos deserts and its implication for weathering, sedimentary processes, Front. Earth Sci., 9(2021), art. No. 711802. doi: 10.3389/feart.2021.711802
      [12]
      P. Yang, Y.L. Suo, L. Liu, et al., Study on the curing mechanism of cemented backfill materials prepared from sodium sulfate modified coal gasification slag, J. Build. Eng., 62(2022), art. No. 105318. doi: 10.1016/j.jobe.2022.105318
      [13]
      N. Zhou, H.B. Ma, S.Y. Ouyang, D. Germain, and T. Hou, Influential factors in transportation and mechanical properties of aeolian sand-based cemented filling material, Minerals, 9(2019), No. 2, art. No. 116. doi: 10.3390/min9020116
      [14]
      S.S. Wang, R.S. Yang, Y.L. Li, B. Xu, and B. Lu, Single-factor analysis and interaction terms on the mechanical and microscopic properties of cemented aeolian sand backfill, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1584. doi: 10.1007/s12613-022-2574-5
      [15]
      X.P. Shao, J.P. Sun, J. Xin, et al., Experimental study on mechanical properties, hydration kinetics, and hydration product characteristics of aeolian sand paste-like materials, Constr. Build. Mater., 303(2021), art. No. 124601. doi: 10.1016/j.conbuildmat.2021.124601
      [16]
      W.B. Xu, Q.L. Li, and M.M. Tian, Strength and deformation properties of polypropylene fiber-reinforced cemented tailings backfill, Chin. J. Eng., 41(2019), No. 12, p. 1618.
      [17]
      W.B. Xu, Q.L. Li, and Y.L. Zhang, Influence of temperature on compressive strength, microstructure properties and failure pattern of fiber-reinforced cemented tailings backfill, Constr. Build. Mater., 222(2019), p. 776. doi: 10.1016/j.conbuildmat.2019.06.203
      [18]
      J.J. Li, S. Cao, E. Yilmaz, and Y.P. Liu, Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 345. doi: 10.1007/s12613-021-2351-x
      [19]
      G.L. Xue, E. Yilmaz, G.R. Feng, S. Cao, and L.J. Sun, Reinforcement effect of polypropylene fiber on dynamic properties of cemented tailings backfill under SHPB impact loading, Constr. Build. Mater., 279(2021), art. No. 122417. doi: 10.1016/j.conbuildmat.2021.122417
      [20]
      D.J. Shen, C. Liu, Y.Y. Luo, H.Z. Shao, X.Y. Zhou, and S.L. Bai, Early-age autogenous shrinkage, tensile creep, and restrained cracking behavior of ultra-high-performance concrete incorporating polypropylene fibers, Cement Concrete Compos., 138(2023), art. No. 104948. doi: 10.1016/j.cemconcomp.2023.104948
      [21]
      X. Chen, X.Z. Shi, J. Zhou, Q.S. Chen, E.M. Li, and X.H. Du, Compressive behavior and microstructural properties of tailings polypropylene fibre-reinforced cemented paste backfill, Constr. Build. Mater., 190(2018), p. 211. doi: 10.1016/j.conbuildmat.2018.09.092
      [22]
      X. Chen, X.Z. Shi, S. Zhang, et al., Fiber-reinforced cemented paste backfill: The effect of fiber on strength properties and estimation of strength using nonlinear models, Materials, 13(2020), No. 3, art. No. 718. doi: 10.3390/ma13030718
      [23]
      G.L. Xue and E. Yilmaz, Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads, Constr. Build. Mater., 338(2022), art. No. 127667. doi: 10.1016/j.conbuildmat.2022.127667
      [24]
      S. Cao, E. Yilmaz, Z.Y. Yin, G.L. Xue, W.D. Song, and L.J. Sun, CT scanning of internal crack mechanism and strength behavior of cement–fiber–tailings matrix composites, Cement Concrete Compos., 116(2021), art. No. 103865. doi: 10.1016/j.cemconcomp.2020.103865
      [25]
      Z.Q. Huang, S. Cao, and E. Yilmaz, Investigation on the flexural strength, failure pattern and microstructural characteristics of combined fibers reinforced cemented tailings backfill, Constr. Build. Mater., 300(2021), art. No. 124005. doi: 10.1016/j.conbuildmat.2021.124005
      [26]
      G.L. Xue, E. Yilmaz, G.R. Feng, and S. Cao, Bending behavior and failure mode of cemented tailings backfill composites incorporating different fibers for sustainable construction, Constr. Build. Mater., 289(2021), art. No. 123163. doi: 10.1016/j.conbuildmat.2021.123163
      [27]
      S.H. Yin, Y.Q. Hou, X. Chen, M.Z. Zhang, H.H. Du, and C. Gao, Mechanical behavior, failure pattern and damage evolution of fiber-reinforced cemented sulfur tailings backfill under uniaxial loading, Constr. Build. Mater., 332(2022), art. No. 127248. doi: 10.1016/j.conbuildmat.2022.127248
      [28]
      S.H. Yin, Y.Q. Hou, X. Chen, and M.Z. Zhang, Mechanical, flowing and microstructural properties of cemented sulfur tailings backfill: Effects of fiber lengths and dosage, Constr. Build. Mater., 309(2021), art. No. 125058. doi: 10.1016/j.conbuildmat.2021.125058
      [29]
      R.F. Yan, J.M. Liu, S.H. Yin, L. Zou, Y.Y. Kou, and P.Q. Zhang, Effect of polypropylene fiber and coarse aggregate on the ductility and fluidity of cemented tailings backfill, J. Cent. South Univ., 29(2022), No. 2, p. 515. doi: 10.1007/s11771-022-4936-6
      [30]
      I.L.S. Libos and L. Cui, Time- and temperature-dependence of compressive and tensile behaviors of polypropylene fiber-reinforced cemented paste backfill, Front. Struct. Civ. Eng., 15(2021), No. 4, p. 1025. doi: 10.1007/s11709-021-0741-9
      [31]
      L. Liu, Z.Y. Fang, C.C. Qi, B. Zhang, L.J. Guo, and K.I.I L. Song, Numerical study on the pipe flow characteristics of the cemented paste backfill slurry considering hydration effects, Powder Technol., 343(2019), p. 454. doi: 10.1016/j.powtec.2018.11.070
      [32]
      Y.C. Xu, E.M. Zhang, L. Zhao, X.Y. Shen, and Z.Y. Li, Study on the law of influence by slurry viscosity on the fractured aquifer grouting and diffusion, J. Min. Sci. Technol., 6(2021), No. 1, p. 71.
      [33]
      A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
      [34]
      X.J. Deng, B. Klein, L.B. Tong, and B. de Wit, Experimental study on the rheological behavior of ultra-fine cemented backfill, Constr. Build. Mater., 158(2018), p. 985. doi: 10.1016/j.conbuildmat.2017.05.085
      [35]
      C.Y. Zhang, R.T. Liu, M.J. Chen, et al., Influence of the flocculation effect on the rheological properties of cement slurry, Powder Technol., 398(2022), art. No. 117118. doi: 10.1016/j.powtec.2022.117118
      [36]
      B.W. Wang, L.J. Gao, W.H. Zhao, Y.N. Li, W. Ding, and Z. Li, Microscopic experiment of consolidating tailings by Linglong cementitious material, J. Min. Sci. Technol., 4(2019), No. 6, p. 524.
      [37]
      Q.L. You, Z. Yang, J.L. Ma, et al., Analysis of the particle characteristics of aeolian sand in Yulin area, China, Adv. Civ. Eng., 2022(2022), No. 1, art. No. 7533159. doi: 10.1155/2022/7533159
      [38]
      P.L. Liu, H.X. Zhang, F. Cui, K.H. Sun, and W.M. Sun, Technology and practice of mechanized backfill mining for water protection with aeolian sand paste-like, J. China Coal Soc., 42(2017), No. 1, p. 118.
      [39]
      M.Z. Zhang, Y.M. Wang, Z.K. Wang, J. Wang, and S.X. Yang, Research on the strength evolution law and ratio optimization of expansive backfill based on response surface methodology, Chin. J. Eng., 46(2024), No. 5, p. 800.
      [40]
      Y.F. Hu, S.H. Yin, K.Q. Li, B. Zhang, and B. Han, Comprehensive utilization of solid waste resources: Development of wet shotcrete for mines, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1692. doi: 10.1007/s12613-022-2563-8
      [41]
      S.S. Wang, B. Xu, Y. Li, and Z. Yang, Optimization of cemented filling material ratio based on RSM-BBD method and engineering application, Coal Geol. Explor., 51(2023), No. 3, p. 73.
      [42]
      S.S. Wang, Y.L. Li, R.S. Yang, B. Xu, and B. Lu, Rheological behavior with time dependence and fresh slurry liquidity of cemented aeolian sand backfill based on response surface method, Constr. Build. Mater., 371(2023), art. No. 130768. doi: 10.1016/j.conbuildmat.2023.130768
      [43]
      D. Arslan, M.K. Demir, A. Acar, and F.N. Arslan, Investigation of wheat germ and oil characteristics with regard to different stabilization techniques, Food Technol. Biotechnol., 58(2020), No. 3, p. 348. doi: 10.17113/ftb.58.03.20.6638
      [44]
      J. Yang, J.L. Wu, and J.Y. Jin, Study on the suspended properties of gangue particles with high concentration of gangue and fly ash, J. Min. Sci. Technol., 4(2019), No. 2, p. 127.
      [45]
      W. He, L. Liu, Z.Y. Fang, Y.H. Gao, and W.J. Sun, Effect of polypropylene fiber on properties of modified magnesium–coal-based solid waste backfill materials, Constr. Build. Mater., 362(2023), art. No. 129695. doi: 10.1016/j.conbuildmat.2022.129695
      [46]
      J. Xin, L. Liu, L.H. Xu, J.Y. Wang, P. Yang, and H.S. Qu, A preliminary study of aeolian sand–cement-modified gasification slag-paste backfill: Fluidity, microstructure, and leaching risks, Sci. Total Environ., 830(2022), art. No. 154766. doi: 10.1016/j.scitotenv.2022.154766
      [47]
      Z.C. Liu, G.W. Wang, X.Y. Xiao, and F. Liu, Process optimization of selective laser melting nickel-based superalloy, Powder Metall. Technol., 39(2021), No. 1, p. 81.
      [48]
      L.Z. Guo, M. Zhou, X.Y. Wang, C. Li, and H.Q. Jia, Preparation of coal gangue–slag–fly ash geopolymer grouting materials, Constr. Build. Mater., 328(2022), art. No. 126997. doi: 10.1016/j.conbuildmat.2022.126997
      [49]
      J.Y. Wu, H.W. Jing, Q. Yin, L.Y. Yu, B. Meng, and S.C. Li, Strength prediction model considering material, ultrasonic and stress of cemented waste rock backfill for recycling gangue, J. Cleaner Prod., 276(2020), art. No. 123189. doi: 10.1016/j.jclepro.2020.123189

    Catalog


    • /

      返回文章
      返回