Cite this article as: |
Shushuai Wang, Renshu Yang, Yongliang Li, and Zhongwen Yue, Effects of cement content, polypropylene fiber length and dosage on fluidity and mechanical properties of fiber-toughened cemented aeolian sand backfill, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2404-2416. https://doi.org/10.1007/s12613-024-2885-9 |
王树帅 E-mail: wsstree@163.com
[1] |
Y.L. Li, Y.N. Bian, and C.H. Liu, Damage and failure mechanism of basalt fiber-reinforced gangue-cemented backfill under uniaxial compression, Constr. Build. Mater., 400(2023), art. No. 132872. doi: 10.1016/j.conbuildmat.2023.132872
|
[2] |
S. Yang, J.Y. Wu, H.W. Jing, et al., Molecular mechanism of fly ash affecting the performance of cemented backfill material, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1560. doi: 10.1007/s12613-023-2658-x
|
[3] |
Y.L. Zhao, J.P. Qiu, and Z.Y. Ma, Temperature-dependent rheological, mechanical and hydration properties of cement paste blended with iron tailings, Powder Technol., 381(2021), p. 82. doi: 10.1016/j.powtec.2020.11.062
|
[4] |
Y.L. Li, B. Lu, R.S. Yang, et al., Cemented backfilling mining technology with continuous mining and continuous backfilling method for underground coal mine and typical engineering cases, J. China Coal Soc., 47(2022), No. 3, p. 1055.
|
[5] |
G.L. Xue, E. Yilmaz, and Y.D. Wang, Progress and prospects of mining with backfill in metal mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1455. doi: 10.1007/s12613-023-2663-0
|
[6] |
J.Y. Wu, H.W. Jing, Y. Gao, Q.B. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cement Concrete Compos., 127(2022), art. No. 104408. doi: 10.1016/j.cemconcomp.2022.104408
|
[7] |
S.S Wang, Y.L. Li, Q. Li, Z.X. Wang, and Y.X. Wang, Influence of gangue gradation coefficient on the performance of filling material based on Talbol theory, J. Min. Saf. Eng., 39(2022), No. 4, p. 683.
|
[8] |
J.Y. Li and J.M. Wang, Comprehensive utilization and environmental risks of coal gangue: A review, J. Cleaner Prod., 239(2019), art. No. 117946. doi: 10.1016/j.jclepro.2019.117946
|
[9] |
W.Z. Gu, B.G. Yang, L. Zhu, and M.Y. Zhao, Study on spatial characteristics of gangue slurry filling mining and engineering practice, J. Min. Sci. Technol., 8(2023), No. 3, p. 409.
|
[10] |
Q.L. Zhang, Q.S. Chen, and X.M. Wang, Cemented backfilling technology of paste-like based on aeolian sand and tailings, Minerals, 6(2016), No. 4, art. No. 132. doi: 10.3390/min6040132
|
[11] |
G.X. Chen, Z.B. Dong, C. Li, et al., Provenance of aeolian sediments in the Ordos deserts and its implication for weathering, sedimentary processes, Front. Earth Sci., 9(2021), art. No. 711802. doi: 10.3389/feart.2021.711802
|
[12] |
P. Yang, Y.L. Suo, L. Liu, et al., Study on the curing mechanism of cemented backfill materials prepared from sodium sulfate modified coal gasification slag, J. Build. Eng., 62(2022), art. No. 105318. doi: 10.1016/j.jobe.2022.105318
|
[13] |
N. Zhou, H.B. Ma, S.Y. Ouyang, D. Germain, and T. Hou, Influential factors in transportation and mechanical properties of aeolian sand-based cemented filling material, Minerals, 9(2019), No. 2, art. No. 116. doi: 10.3390/min9020116
|
[14] |
S.S. Wang, R.S. Yang, Y.L. Li, B. Xu, and B. Lu, Single-factor analysis and interaction terms on the mechanical and microscopic properties of cemented aeolian sand backfill, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1584. doi: 10.1007/s12613-022-2574-5
|
[15] |
X.P. Shao, J.P. Sun, J. Xin, et al., Experimental study on mechanical properties, hydration kinetics, and hydration product characteristics of aeolian sand paste-like materials, Constr. Build. Mater., 303(2021), art. No. 124601. doi: 10.1016/j.conbuildmat.2021.124601
|
[16] |
W.B. Xu, Q.L. Li, and M.M. Tian, Strength and deformation properties of polypropylene fiber-reinforced cemented tailings backfill, Chin. J. Eng., 41(2019), No. 12, p. 1618.
|
[17] |
W.B. Xu, Q.L. Li, and Y.L. Zhang, Influence of temperature on compressive strength, microstructure properties and failure pattern of fiber-reinforced cemented tailings backfill, Constr. Build. Mater., 222(2019), p. 776. doi: 10.1016/j.conbuildmat.2019.06.203
|
[18] |
J.J. Li, S. Cao, E. Yilmaz, and Y.P. Liu, Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 345. doi: 10.1007/s12613-021-2351-x
|
[19] |
G.L. Xue, E. Yilmaz, G.R. Feng, S. Cao, and L.J. Sun, Reinforcement effect of polypropylene fiber on dynamic properties of cemented tailings backfill under SHPB impact loading, Constr. Build. Mater., 279(2021), art. No. 122417. doi: 10.1016/j.conbuildmat.2021.122417
|
[20] |
D.J. Shen, C. Liu, Y.Y. Luo, H.Z. Shao, X.Y. Zhou, and S.L. Bai, Early-age autogenous shrinkage, tensile creep, and restrained cracking behavior of ultra-high-performance concrete incorporating polypropylene fibers, Cement Concrete Compos., 138(2023), art. No. 104948. doi: 10.1016/j.cemconcomp.2023.104948
|
[21] |
X. Chen, X.Z. Shi, J. Zhou, Q.S. Chen, E.M. Li, and X.H. Du, Compressive behavior and microstructural properties of tailings polypropylene fibre-reinforced cemented paste backfill, Constr. Build. Mater., 190(2018), p. 211. doi: 10.1016/j.conbuildmat.2018.09.092
|
[22] |
X. Chen, X.Z. Shi, S. Zhang, et al., Fiber-reinforced cemented paste backfill: The effect of fiber on strength properties and estimation of strength using nonlinear models, Materials, 13(2020), No. 3, art. No. 718. doi: 10.3390/ma13030718
|
[23] |
G.L. Xue and E. Yilmaz, Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads, Constr. Build. Mater., 338(2022), art. No. 127667. doi: 10.1016/j.conbuildmat.2022.127667
|
[24] |
S. Cao, E. Yilmaz, Z.Y. Yin, G.L. Xue, W.D. Song, and L.J. Sun, CT scanning of internal crack mechanism and strength behavior of cement–fiber–tailings matrix composites, Cement Concrete Compos., 116(2021), art. No. 103865. doi: 10.1016/j.cemconcomp.2020.103865
|
[25] |
Z.Q. Huang, S. Cao, and E. Yilmaz, Investigation on the flexural strength, failure pattern and microstructural characteristics of combined fibers reinforced cemented tailings backfill, Constr. Build. Mater., 300(2021), art. No. 124005. doi: 10.1016/j.conbuildmat.2021.124005
|
[26] |
G.L. Xue, E. Yilmaz, G.R. Feng, and S. Cao, Bending behavior and failure mode of cemented tailings backfill composites incorporating different fibers for sustainable construction, Constr. Build. Mater., 289(2021), art. No. 123163. doi: 10.1016/j.conbuildmat.2021.123163
|
[27] |
S.H. Yin, Y.Q. Hou, X. Chen, M.Z. Zhang, H.H. Du, and C. Gao, Mechanical behavior, failure pattern and damage evolution of fiber-reinforced cemented sulfur tailings backfill under uniaxial loading, Constr. Build. Mater., 332(2022), art. No. 127248. doi: 10.1016/j.conbuildmat.2022.127248
|
[28] |
S.H. Yin, Y.Q. Hou, X. Chen, and M.Z. Zhang, Mechanical, flowing and microstructural properties of cemented sulfur tailings backfill: Effects of fiber lengths and dosage, Constr. Build. Mater., 309(2021), art. No. 125058. doi: 10.1016/j.conbuildmat.2021.125058
|
[29] |
R.F. Yan, J.M. Liu, S.H. Yin, L. Zou, Y.Y. Kou, and P.Q. Zhang, Effect of polypropylene fiber and coarse aggregate on the ductility and fluidity of cemented tailings backfill, J. Cent. South Univ., 29(2022), No. 2, p. 515. doi: 10.1007/s11771-022-4936-6
|
[30] |
I.L.S. Libos and L. Cui, Time- and temperature-dependence of compressive and tensile behaviors of polypropylene fiber-reinforced cemented paste backfill, Front. Struct. Civ. Eng., 15(2021), No. 4, p. 1025. doi: 10.1007/s11709-021-0741-9
|
[31] |
L. Liu, Z.Y. Fang, C.C. Qi, B. Zhang, L.J. Guo, and K.I.I L. Song, Numerical study on the pipe flow characteristics of the cemented paste backfill slurry considering hydration effects, Powder Technol., 343(2019), p. 454. doi: 10.1016/j.powtec.2018.11.070
|
[32] |
Y.C. Xu, E.M. Zhang, L. Zhao, X.Y. Shen, and Z.Y. Li, Study on the law of influence by slurry viscosity on the fractured aquifer grouting and diffusion, J. Min. Sci. Technol., 6(2021), No. 1, p. 71.
|
[33] |
A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
|
[34] |
X.J. Deng, B. Klein, L.B. Tong, and B. de Wit, Experimental study on the rheological behavior of ultra-fine cemented backfill, Constr. Build. Mater., 158(2018), p. 985. doi: 10.1016/j.conbuildmat.2017.05.085
|
[35] |
C.Y. Zhang, R.T. Liu, M.J. Chen, et al., Influence of the flocculation effect on the rheological properties of cement slurry, Powder Technol., 398(2022), art. No. 117118. doi: 10.1016/j.powtec.2022.117118
|
[36] |
B.W. Wang, L.J. Gao, W.H. Zhao, Y.N. Li, W. Ding, and Z. Li, Microscopic experiment of consolidating tailings by Linglong cementitious material, J. Min. Sci. Technol., 4(2019), No. 6, p. 524.
|
[37] |
Q.L. You, Z. Yang, J.L. Ma, et al., Analysis of the particle characteristics of aeolian sand in Yulin area, China, Adv. Civ. Eng., 2022(2022), No. 1, art. No. 7533159. doi: 10.1155/2022/7533159
|
[38] |
P.L. Liu, H.X. Zhang, F. Cui, K.H. Sun, and W.M. Sun, Technology and practice of mechanized backfill mining for water protection with aeolian sand paste-like, J. China Coal Soc., 42(2017), No. 1, p. 118.
|
[39] |
M.Z. Zhang, Y.M. Wang, Z.K. Wang, J. Wang, and S.X. Yang, Research on the strength evolution law and ratio optimization of expansive backfill based on response surface methodology, Chin. J. Eng., 46(2024), No. 5, p. 800.
|
[40] |
Y.F. Hu, S.H. Yin, K.Q. Li, B. Zhang, and B. Han, Comprehensive utilization of solid waste resources: Development of wet shotcrete for mines, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1692. doi: 10.1007/s12613-022-2563-8
|
[41] |
S.S. Wang, B. Xu, Y. Li, and Z. Yang, Optimization of cemented filling material ratio based on RSM-BBD method and engineering application, Coal Geol. Explor., 51(2023), No. 3, p. 73.
|
[42] |
S.S. Wang, Y.L. Li, R.S. Yang, B. Xu, and B. Lu, Rheological behavior with time dependence and fresh slurry liquidity of cemented aeolian sand backfill based on response surface method, Constr. Build. Mater., 371(2023), art. No. 130768. doi: 10.1016/j.conbuildmat.2023.130768
|
[43] |
D. Arslan, M.K. Demir, A. Acar, and F.N. Arslan, Investigation of wheat germ and oil characteristics with regard to different stabilization techniques, Food Technol. Biotechnol., 58(2020), No. 3, p. 348. doi: 10.17113/ftb.58.03.20.6638
|
[44] |
J. Yang, J.L. Wu, and J.Y. Jin, Study on the suspended properties of gangue particles with high concentration of gangue and fly ash, J. Min. Sci. Technol., 4(2019), No. 2, p. 127.
|
[45] |
W. He, L. Liu, Z.Y. Fang, Y.H. Gao, and W.J. Sun, Effect of polypropylene fiber on properties of modified magnesium–coal-based solid waste backfill materials, Constr. Build. Mater., 362(2023), art. No. 129695. doi: 10.1016/j.conbuildmat.2022.129695
|
[46] |
J. Xin, L. Liu, L.H. Xu, J.Y. Wang, P. Yang, and H.S. Qu, A preliminary study of aeolian sand–cement-modified gasification slag-paste backfill: Fluidity, microstructure, and leaching risks, Sci. Total Environ., 830(2022), art. No. 154766. doi: 10.1016/j.scitotenv.2022.154766
|
[47] |
Z.C. Liu, G.W. Wang, X.Y. Xiao, and F. Liu, Process optimization of selective laser melting nickel-based superalloy, Powder Metall. Technol., 39(2021), No. 1, p. 81.
|
[48] |
L.Z. Guo, M. Zhou, X.Y. Wang, C. Li, and H.Q. Jia, Preparation of coal gangue–slag–fly ash geopolymer grouting materials, Constr. Build. Mater., 328(2022), art. No. 126997. doi: 10.1016/j.conbuildmat.2022.126997
|
[49] |
J.Y. Wu, H.W. Jing, Q. Yin, L.Y. Yu, B. Meng, and S.C. Li, Strength prediction model considering material, ultrasonic and stress of cemented waste rock backfill for recycling gangue, J. Cleaner Prod., 276(2020), art. No. 123189. doi: 10.1016/j.jclepro.2020.123189
|