留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(11)  / 表(9)

数据统计

分享

计量
  • 文章访问数:  190
  • HTML全文浏览量:  75
  • PDF下载量:  10
  • 被引次数: 0
Zongyou Cheng, Qing Zhao, Mengjie Tao, Jijun Du, Xingxi Huang,  and Chengjun Liu, Preparation of FeCoNi medium entropy alloy from Fe3+–Co2+–Ni2+ solution system, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2888-6
Cite this article as:
Zongyou Cheng, Qing Zhao, Mengjie Tao, Jijun Du, Xingxi Huang,  and Chengjun Liu, Preparation of FeCoNi medium entropy alloy from Fe3+–Co2+–Ni2+ solution system, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2888-6
引用本文 PDF XML SpringerLink
研究论文

Fe3+–Co2+–Ni2+溶液体系制备FeCoNi中熵合金


  • 通讯作者:

    赵青    E-mail: zhaoq@smm.neu.edu.cn

    陶梦洁    E-mail: 2310655@stu.neu.edu.cn

文章亮点

  • (1) 溶胶–凝胶法和共沉淀法均可制备无定形FeCoNi MEA前驱体
  • (2) 在FeCoNi中采用碳热还原和氢还原法制备熵合金的最佳反应温度为1500°C
  • (3) 在1500°C时,可以通过氢还原法制备FeCoNi MEA,而碳热还原不完全
  • (4) 在最优条件下,采用氢还原法制备的FeCoNi MEA的饱和磁化强度为155.8 emu.g−1,矫顽力为113.5 A.m−1
  • 近年来,中熵合金以其优异的物理和化学性能成为研究热点。通过控制合理的元素组成和工艺参数,可以使中熵合金具有与高熵合金相似的性能,并降低成本。本文分别采用溶胶–凝胶法和共沉淀法制备了FeCoNi中熵合金前驱体,采用碳热还原法和氢还原法制备了FeCoNi中熵合金。研究了FeCoNi中熵合金的物相和磁性能。结果表明:在1500°C下经碳热还原和氢还原制备了FeCoNi中熵合金。在碳热还原法制备的FeCoNi中熵合金中检测到一定量的碳。氢还原法制备的合金均匀,纯度较高。氢还原产物具有较好的饱和磁化强度和较低的矫顽力。
  • Research Article

    Preparation of FeCoNi medium entropy alloy from Fe3+–Co2+–Ni2+ solution system

    + Author Affiliations
    • In recent years, medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances. By controlling reasonable elemental composition and processing parameters, the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs. In this paper, a FeCoNi medium entropy alloy precursor was prepared via sol–gel and co-precipitation methods, respectively, and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction. The phases and magnetic properties of FeCoNi medium entropy alloy were investigated. Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500°C. Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction. The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity. Moreover, the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.
    • loading
    • [1]
      J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
      [2]
      W.R. Zhang, P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater., 61(2018), No. 1, p. 2. doi: 10.1007/s40843-017-9195-8
      [3]
      J. Chen, X.Y. Zhou, W.L. Wang, et al., A review on fundamental of high entropy alloys with promising high–temperature properties, J. Alloys Compd., 760(2018), p. 15. doi: 10.1016/j.jallcom.2018.05.067
      [4]
      A. Takeuchi, Recent progress in alloy designs for high-entropy crystalline and glassy alloys, J. Jpn. Soc. Powder Powder Metall., 63(2016), No. 4, p. 209. doi: 10.2497/jjspm.63.209
      [5]
      D.L. Beke and G. Erdélyi, On the diffusion in high-entropy alloys, Mater. Lett., 164(2016), No. 164, p. 111.
      [6]
      B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, et al., Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun., 7(2016), art. No. 10602. doi: 10.1038/ncomms10602
      [7]
      Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater., 81(2014), p. 428. doi: 10.1016/j.actamat.2014.08.026
      [8]
      G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater., 128(2017), p. 292. doi: 10.1016/j.actamat.2017.02.036
      [9]
      R.P. Zhang, S.T. Zhao, J. Ding, et al., Short-range order and its impact on the CrCoNi medium-entropy alloy, Nature, 581(2020), No. 7808, p. 283. doi: 10.1038/s41586-020-2275-z
      [10]
      H. Song, D.G. Kim, D.W. Kim, et al., Effects of strain rate on room- and cryogenic-temperature compressive properties in metastable V10Cr10Fe45Co35 high-entropy alloy, Sci. Rep., 9(2019), No. 1, art. No. 6163. doi: 10.1038/s41598-019-42704-x
      [11]
      Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389. doi: 10.1007/s12613-021-2373-4
      [12]
      J.L. Chen, Z.X. Feng, J.H. Yi, and J. Yang, Effect of low temperature rolling on mechanical properties and corrosion resistance of CrCoNi medium entropy alloy, Mater. Res. Express, 9(2022), No. 1, art. No. 016502. doi: 10.1088/2053-1591/ac45bc
      [13]
      X. L. An, Design , Microstructure and Properties of CoNiFe-based Ternary Medium Entropy Alloy with Face Centered Cubic [Dissertation], Southeast University, Nanjing, 2020, p. 1.
      [14]
      H. Zhou, Effect of Plastic Deformation on Microstructure and Properties of CoCrFeNi High-entropy Alloy [Dissertation], Southeast University, Nanjing, 2020, p. 12.
      [15]
      H.Q. Wu, D.M. Xu, Q. Wang, Q.Y. Wang, G.Q. Su, and X.W. Wei, Composition-controlled synthesis, structure and magnetic properties of ternary Fe xCoyNi100– x y alloys attached on carbon nanotubes, J. Alloys Compd., 463(2008), No. 1–2, p. 78.
      [16]
      K. Chokprasombat, S. Pinitsoontorn, and S. Maensiri, Effects of Ni content on nanocrystalline Fe–Co–Ni ternary alloys synthesized by a chemical reduction method, J. Magn. Magn. Mater., 405(2016), p. 174. doi: 10.1016/j.jmmm.2015.12.064
      [17]
      T.V. Jayaraman, A. Rathi, and G.V. Thotakura, Evaluation of the suitability of Fe40Co30Ni30 as a precursor for Fe-rich FeCoNi-based high-entropy semi-hard magnets, Intermetallics, 119(2020), art. No. 106715. doi: 10.1016/j.intermet.2020.106715
      [18]
      H. Ahmadian Baghbaderani, S. Sharafi, and M. Delshad Chermahini, Investigation of nanostructure formation mechanism and magnetic properties in Fe45Co45Ni10 system synthesized by mechanical alloying, Powder Technol., 230(2012), p. 241. doi: 10.1016/j.powtec.2012.07.039
      [19]
      G.V. Thotakura, A. Rathi, and T.V. Jayaraman, Structure and magnetic properties of mechanically alloyed nanocrystalline Fe–46at.%Co–34at.%Ni–20at.% alloy powder from cryogenic to elevated temperatures, Appl. Phys. A, 125(2019), No. 4, art. No. 235. doi: 10.1007/s00339-019-2535-7
      [20]
      T.T. Zuo, Microstructure and Properties of Co–Fe–Ni Magnetic High-Entropy Alloy [Dissertation], University of Science and Technology Beijing, Beijing, 2017, p. 3.
      [21]
      Z. Li, Magnetic Properties and Microstructure of FeCoNiMx (M=AlCu , AlMn , AlSi , and MnSi ) High-entropy Alloys [Dissertation], Shanghai University, Shanghai, 2019, p.15.
      [22]
      A. Rathi, V.M. Meka, and T.V. Jayaraman, Synthesis of nanocrystalline equiatomic nickel–cobalt–iron alloy powders by mechanical alloying and their structural and magnetic characterization, J. Magn. Magn. Mater., 469(2019), p. 467. doi: 10.1016/j.jmmm.2018.09.002
      [23]
      W. Li, P. Liu, and P.K. Liaw, Microstructures and properties of high-entropy alloy films and coatings: A review, Mater. Res. Lett., 6(2018), No. 4, p. 199. doi: 10.1080/21663831.2018.1434248
      [24]
      H.T. Luo, Regenerated Silicate Material Using Waste Concrete-clay Brick by Hydrothermal Synthesis [Dissertation], Dalian University of Technology, Dalian, 2020, p. 20.
      [25]
      K.V. Raun, L.F. Lundegaard, J. Chevallier, et al., Deactivation behavior of an iron-molybdate catalyst during selective oxidation of methanol to formaldehyde, Catal. Sci. Technol., 8(2018), No. 18, p. 4626. doi: 10.1039/C8CY01109E
      [26]
      K.V. Raun, L.F. Lundegaard, P. Beato, et al., Stability of iron–molybdate catalysts for selective oxidation of methanol to formaldehyde: Influence of preparation method, Catal. Lett., 150(2020), No. 5, p. 1434. doi: 10.1007/s10562-019-03034-9
      [27]
      A.E. Ameh, O.O. Fatoba, N. Musyoka, B. Louis, and L. Petrik, Transformation of fly ash based nanosilica extract to BEA zeolite and its durability in hot liquid, Microporous Mesoporous Mater., 305(2020), art. No. 110332. doi: 10.1016/j.micromeso.2020.110332
      [28]
      E. Muchuweni, T.S. Sathiaraj, and H. Nyakotyo, Hydrothermal synthesis of ZnO nanowires on rf sputtered Ga and Al Co-doped ZnO thin films for solar cell application, J. Alloys Compd., 721(2017), p. 45. doi: 10.1016/j.jallcom.2017.05.317
      [29]
      D. Cao, Study on Preparation of High Purity Alumina Powder from Waste Aluminum [Dissertation], Dalian Jiaotong University, Dalian, 2014, p. 15.
      [30]
      S. Carstens and D. Enke, Investigation of the formation process of highly porous α-Al2O3 via citric acid-assisted sol–gel synthesis, J. Eur. Ceram. Soc, 39(2019), No. 7, p. 2493. doi: 10.1016/j.jeurceramsoc.2019.01.043
      [31]
      G.T.K. Fey, R.F. Shiu, V. Subramanian, J.G. Chen, and C.L. Chen, LiNi0.8Co0.2O2 cathode materials synthesized by the maleic acid assisted sol–gel method for lithium batteries, J. Power Sources, 103(2002), No. 2, p. 265. doi: 10.1016/S0378-7753(01)00859-X
      [32]
      S.M. Sajjadi, M. Haghighi, A.A. Eslami, and F. Rahmani, Hydrogen production via CO2-reforming of methane over Cu and Co doped Ni/Al2O3 nanocatalyst: Impregnation versus sol–gel method and effect of process conditions and promoter, J. SolGel Sci. Technol., 67(2013), No. 3, p. 601.
      [33]
      L. Liu, The Manufacture of Lithium Manganses Iron Phosphate Precursor Using Low-grade Manganese Ore and Crap Iron [Dissertation], Northeastern University, Shenyang, 2018, p. 31.
      [34]
      V. Karimi, M. Asemi, and M. Ghanaatshoar, Improving photovoltaic properties of ZTO-based DSSCs using surface modification of Zn2SnO4 nanoparticles prepared by co-precipitation method, Mater. Sci. Semicond. Process., 127(2021), art. No. 105664. doi: 10.1016/j.mssp.2021.105664
      [35]
      S. Tillaoui, A. El Boubekri, A. Essoumhi, et al., Structural, magnetic, magnetocaloric properties and critical behavior of La0.62Nd0.05Ba0.33MnO3 elaborated by co-precipitation process, Mater. Sci. Eng. B, 266(2021), art. No. 115052. doi: 10.1016/j.mseb.2021.115052
      [36]
      S.V.M. Goorabjavari, F. Golmohamadi, S. Haririmonfared, et al., Thermodynamic and anticancer properties of inorganic zinc oxide nanoparticles synthesized through co-precipitation method, J. Mol. Liq., 330(2021), art. No. 115602. doi: 10.1016/j.molliq.2021.115602
      [37]
      S. Akilandeswari, G. Rajesh, D. Govindarajan, K. Thirumalai, and M. Swaminathan, Efficacy of photoluminescence and photocatalytic properties of Mn doped ZrO2 nanoparticles by facile precipitation method, J. Mater. Sci. Mater. Electron., 29(2018), No. 21, p. 18258. doi: 10.1007/s10854-018-9940-0
      [38]
      K.J. Park, M.J. Choi, F. Maglia, et al., High-capacity concentration gradient Li[Ni0.865Co0.120Al0.015]O2 cathode for lithium-ion batteries, Adv. Energy Mater., 8(2018), No. 19, art. No. 1703612. doi: 10.1002/aenm.201703612
      [39]
      Y. Sun, J. Zhang, T. Li, and Q.J. Li, Experimental study on reduction Ni from stainless steel sludge, Shanghai Met., 38(2016), No.2, p. 64.
      [40]
      X.D. Zhang, S.L. Liang, B. Liu, X.J. Liu, and Z.L. Li, Study on preparation of Mn– Zn ferrite by waste dry battery and titanium dioxide waste acid, Inorg. Chem. Ind, 45(2013), No. 07, p. 44.
      [41]
      Z. Wu, H. Bei, F. Otto, G.M. Pharr, and E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics, 46(2014), p. 131. doi: 10.1016/j.intermet.2013.10.024
      [42]
      C.H. Tsau, S.X. Lin, and C.H. Fang, Microstructures and corrosion behaviors of FeCoNi and CrFeCoNi equimolar alloys, Mater. Chem. Phys., 186(2017), p. 534. doi: 10.1016/j.matchemphys.2016.11.033
      [43]
      H.W. Yao, J.W. Qiao, M. Gao, J. Hawk, S.G. Ma, and H.F. Zhou, MoNbTaV medium-entropy alloy, Entropy, 18(2016), No. 5, art. No. 189. doi: 10.3390/e18050189
      [44]
      B. Uzer, S. Picak, J. Liu, et al., On the mechanical response and microstructure evolution of NiCoCr single crystalline medium entropy alloys, Mater. Res. Lett., 6(2018), No. 8, p. 442. doi: 10.1080/21663831.2018.1478331
      [45]
      Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid–solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10(2008), No. 6, p. 534. doi: 10.1002/adem.200700240
      [46]
      J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, High-entropy alloys–A new era of exploitation, Mater. Sci. Forum, 560(2007), p. 1. doi: 10.4028/www.scientific.net/MSF.560.1
      [47]
      A. Takeuchi and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46(2005), No. 12, p. 2817. doi: 10.2320/matertrans.46.2817
      [48]
      Z. Tang, O.N. Senkov, C.M. Parish, et al., Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization, Mater. Sci. Eng. A, 647(2015), p. 229. doi: 10.1016/j.msea.2015.08.078
      [49]
      J.C. Jiang and X.Y. Luo, High temperature oxidation behaviour of AlCuTiFeNiCr high-entropy alloy, Adv. Mater. Res., 652–654(2013), p. 1115.
      [50]
      X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132(2012), No. 2–3, p. 233.
      [51]
      S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, art. No. 103505. doi: 10.1063/1.3587228

    Catalog


    • /

      返回文章
      返回