Cite this article as: |
Zongyou Cheng, Qing Zhao, Mengjie Tao, Jijun Du, Xingxi Huang, and Chengjun Liu, Preparation of FeCoNi medium entropy alloy from Fe3+–Co2+–Ni2+ solution system, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2888-6 |
赵青 E-mail: zhaoq@smm.neu.edu.cn
陶梦洁 E-mail: 2310655@stu.neu.edu.cn
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
|
[2] |
W.R. Zhang, P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater., 61(2018), No. 1, p. 2. doi: 10.1007/s40843-017-9195-8
|
[3] |
J. Chen, X.Y. Zhou, W.L. Wang, et al., A review on fundamental of high entropy alloys with promising high–temperature properties, J. Alloys Compd., 760(2018), p. 15. doi: 10.1016/j.jallcom.2018.05.067
|
[4] |
A. Takeuchi, Recent progress in alloy designs for high-entropy crystalline and glassy alloys, J. Jpn. Soc. Powder Powder Metall., 63(2016), No. 4, p. 209. doi: 10.2497/jjspm.63.209
|
[5] |
D.L. Beke and G. Erdélyi, On the diffusion in high-entropy alloys, Mater. Lett., 164(2016), No. 164, p. 111.
|
[6] |
B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, et al., Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun., 7(2016), art. No. 10602. doi: 10.1038/ncomms10602
|
[7] |
Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater., 81(2014), p. 428. doi: 10.1016/j.actamat.2014.08.026
|
[8] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater., 128(2017), p. 292. doi: 10.1016/j.actamat.2017.02.036
|
[9] |
R.P. Zhang, S.T. Zhao, J. Ding, et al., Short-range order and its impact on the CrCoNi medium-entropy alloy, Nature, 581(2020), No. 7808, p. 283. doi: 10.1038/s41586-020-2275-z
|
[10] |
H. Song, D.G. Kim, D.W. Kim, et al., Effects of strain rate on room- and cryogenic-temperature compressive properties in metastable V10Cr10Fe45Co35 high-entropy alloy, Sci. Rep., 9(2019), No. 1, art. No. 6163. doi: 10.1038/s41598-019-42704-x
|
[11] |
Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389. doi: 10.1007/s12613-021-2373-4
|
[12] |
J.L. Chen, Z.X. Feng, J.H. Yi, and J. Yang, Effect of low temperature rolling on mechanical properties and corrosion resistance of CrCoNi medium entropy alloy, Mater. Res. Express, 9(2022), No. 1, art. No. 016502. doi: 10.1088/2053-1591/ac45bc
|
[13] |
X. L. An, Design , Microstructure and Properties of CoNiFe-based Ternary Medium Entropy Alloy with Face Centered Cubic [Dissertation], Southeast University, Nanjing, 2020, p. 1.
|
[14] |
H. Zhou, Effect of Plastic Deformation on Microstructure and Properties of CoCrFeNi High-entropy Alloy [Dissertation], Southeast University, Nanjing, 2020, p. 12.
|
[15] |
H.Q. Wu, D.M. Xu, Q. Wang, Q.Y. Wang, G.Q. Su, and X.W. Wei, Composition-controlled synthesis, structure and magnetic properties of ternary Fe xCoyNi100– x– y alloys attached on carbon nanotubes, J. Alloys Compd., 463(2008), No. 1–2, p. 78.
|
[16] |
K. Chokprasombat, S. Pinitsoontorn, and S. Maensiri, Effects of Ni content on nanocrystalline Fe–Co–Ni ternary alloys synthesized by a chemical reduction method, J. Magn. Magn. Mater., 405(2016), p. 174. doi: 10.1016/j.jmmm.2015.12.064
|
[17] |
T.V. Jayaraman, A. Rathi, and G.V. Thotakura, Evaluation of the suitability of Fe40Co30Ni30 as a precursor for Fe-rich FeCoNi-based high-entropy semi-hard magnets, Intermetallics, 119(2020), art. No. 106715. doi: 10.1016/j.intermet.2020.106715
|
[18] |
H. Ahmadian Baghbaderani, S. Sharafi, and M. Delshad Chermahini, Investigation of nanostructure formation mechanism and magnetic properties in Fe45Co45Ni10 system synthesized by mechanical alloying, Powder Technol., 230(2012), p. 241. doi: 10.1016/j.powtec.2012.07.039
|
[19] |
G.V. Thotakura, A. Rathi, and T.V. Jayaraman, Structure and magnetic properties of mechanically alloyed nanocrystalline Fe–46at.%Co–34at.%Ni–20at.% alloy powder from cryogenic to elevated temperatures, Appl. Phys. A, 125(2019), No. 4, art. No. 235. doi: 10.1007/s00339-019-2535-7
|
[20] |
T.T. Zuo, Microstructure and Properties of Co–Fe–Ni Magnetic High-Entropy Alloy [Dissertation], University of Science and Technology Beijing, Beijing, 2017, p. 3.
|
[21] |
Z. Li, Magnetic Properties and Microstructure of FeCoNiMx (M=AlCu , AlMn , AlSi , and MnSi ) High-entropy Alloys [Dissertation], Shanghai University, Shanghai, 2019, p.15.
|
[22] |
A. Rathi, V.M. Meka, and T.V. Jayaraman, Synthesis of nanocrystalline equiatomic nickel–cobalt–iron alloy powders by mechanical alloying and their structural and magnetic characterization, J. Magn. Magn. Mater., 469(2019), p. 467. doi: 10.1016/j.jmmm.2018.09.002
|
[23] |
W. Li, P. Liu, and P.K. Liaw, Microstructures and properties of high-entropy alloy films and coatings: A review, Mater. Res. Lett., 6(2018), No. 4, p. 199. doi: 10.1080/21663831.2018.1434248
|
[24] |
H.T. Luo, Regenerated Silicate Material Using Waste Concrete-clay Brick by Hydrothermal Synthesis [Dissertation], Dalian University of Technology, Dalian, 2020, p. 20.
|
[25] |
K.V. Raun, L.F. Lundegaard, J. Chevallier, et al., Deactivation behavior of an iron-molybdate catalyst during selective oxidation of methanol to formaldehyde, Catal. Sci. Technol., 8(2018), No. 18, p. 4626. doi: 10.1039/C8CY01109E
|
[26] |
K.V. Raun, L.F. Lundegaard, P. Beato, et al., Stability of iron–molybdate catalysts for selective oxidation of methanol to formaldehyde: Influence of preparation method, Catal. Lett., 150(2020), No. 5, p. 1434. doi: 10.1007/s10562-019-03034-9
|
[27] |
A.E. Ameh, O.O. Fatoba, N. Musyoka, B. Louis, and L. Petrik, Transformation of fly ash based nanosilica extract to BEA zeolite and its durability in hot liquid, Microporous Mesoporous Mater., 305(2020), art. No. 110332. doi: 10.1016/j.micromeso.2020.110332
|
[28] |
E. Muchuweni, T.S. Sathiaraj, and H. Nyakotyo, Hydrothermal synthesis of ZnO nanowires on rf sputtered Ga and Al Co-doped ZnO thin films for solar cell application, J. Alloys Compd., 721(2017), p. 45. doi: 10.1016/j.jallcom.2017.05.317
|
[29] |
D. Cao, Study on Preparation of High Purity Alumina Powder from Waste Aluminum [Dissertation], Dalian Jiaotong University, Dalian, 2014, p. 15.
|
[30] |
S. Carstens and D. Enke, Investigation of the formation process of highly porous α-Al2O3 via citric acid-assisted sol–gel synthesis, J. Eur. Ceram. Soc, 39(2019), No. 7, p. 2493. doi: 10.1016/j.jeurceramsoc.2019.01.043
|
[31] |
G.T.K. Fey, R.F. Shiu, V. Subramanian, J.G. Chen, and C.L. Chen, LiNi0.8Co0.2O2 cathode materials synthesized by the maleic acid assisted sol–gel method for lithium batteries, J. Power Sources, 103(2002), No. 2, p. 265. doi: 10.1016/S0378-7753(01)00859-X
|
[32] |
S.M. Sajjadi, M. Haghighi, A.A. Eslami, and F. Rahmani, Hydrogen production via CO2-reforming of methane over Cu and Co doped Ni/Al2O3 nanocatalyst: Impregnation versus sol–gel method and effect of process conditions and promoter, J. Sol–Gel Sci. Technol., 67(2013), No. 3, p. 601.
|
[33] |
L. Liu, The Manufacture of Lithium Manganses Iron Phosphate Precursor Using Low-grade Manganese Ore and Crap Iron [Dissertation], Northeastern University, Shenyang, 2018, p. 31.
|
[34] |
V. Karimi, M. Asemi, and M. Ghanaatshoar, Improving photovoltaic properties of ZTO-based DSSCs using surface modification of Zn2SnO4 nanoparticles prepared by co-precipitation method, Mater. Sci. Semicond. Process., 127(2021), art. No. 105664. doi: 10.1016/j.mssp.2021.105664
|
[35] |
S. Tillaoui, A. El Boubekri, A. Essoumhi, et al., Structural, magnetic, magnetocaloric properties and critical behavior of La0.62Nd0.05Ba0.33MnO3 elaborated by co-precipitation process, Mater. Sci. Eng. B, 266(2021), art. No. 115052. doi: 10.1016/j.mseb.2021.115052
|
[36] |
S.V.M. Goorabjavari, F. Golmohamadi, S. Haririmonfared, et al., Thermodynamic and anticancer properties of inorganic zinc oxide nanoparticles synthesized through co-precipitation method, J. Mol. Liq., 330(2021), art. No. 115602. doi: 10.1016/j.molliq.2021.115602
|
[37] |
S. Akilandeswari, G. Rajesh, D. Govindarajan, K. Thirumalai, and M. Swaminathan, Efficacy of photoluminescence and photocatalytic properties of Mn doped ZrO2 nanoparticles by facile precipitation method, J. Mater. Sci. Mater. Electron., 29(2018), No. 21, p. 18258. doi: 10.1007/s10854-018-9940-0
|
[38] |
K.J. Park, M.J. Choi, F. Maglia, et al., High-capacity concentration gradient Li[Ni0.865Co0.120Al0.015]O2 cathode for lithium-ion batteries, Adv. Energy Mater., 8(2018), No. 19, art. No. 1703612. doi: 10.1002/aenm.201703612
|
[39] |
Y. Sun, J. Zhang, T. Li, and Q.J. Li, Experimental study on reduction Ni from stainless steel sludge, Shanghai Met., 38(2016), No.2, p. 64.
|
[40] |
X.D. Zhang, S.L. Liang, B. Liu, X.J. Liu, and Z.L. Li, Study on preparation of Mn– Zn ferrite by waste dry battery and titanium dioxide waste acid, Inorg. Chem. Ind, 45(2013), No. 07, p. 44.
|
[41] |
Z. Wu, H. Bei, F. Otto, G.M. Pharr, and E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics, 46(2014), p. 131. doi: 10.1016/j.intermet.2013.10.024
|
[42] |
C.H. Tsau, S.X. Lin, and C.H. Fang, Microstructures and corrosion behaviors of FeCoNi and CrFeCoNi equimolar alloys, Mater. Chem. Phys., 186(2017), p. 534. doi: 10.1016/j.matchemphys.2016.11.033
|
[43] |
H.W. Yao, J.W. Qiao, M. Gao, J. Hawk, S.G. Ma, and H.F. Zhou, MoNbTaV medium-entropy alloy, Entropy, 18(2016), No. 5, art. No. 189. doi: 10.3390/e18050189
|
[44] |
B. Uzer, S. Picak, J. Liu, et al., On the mechanical response and microstructure evolution of NiCoCr single crystalline medium entropy alloys, Mater. Res. Lett., 6(2018), No. 8, p. 442. doi: 10.1080/21663831.2018.1478331
|
[45] |
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid–solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10(2008), No. 6, p. 534. doi: 10.1002/adem.200700240
|
[46] |
J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, High-entropy alloys–A new era of exploitation, Mater. Sci. Forum, 560(2007), p. 1. doi: 10.4028/www.scientific.net/MSF.560.1
|
[47] |
A. Takeuchi and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46(2005), No. 12, p. 2817. doi: 10.2320/matertrans.46.2817
|
[48] |
Z. Tang, O.N. Senkov, C.M. Parish, et al., Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization, Mater. Sci. Eng. A, 647(2015), p. 229. doi: 10.1016/j.msea.2015.08.078
|
[49] |
J.C. Jiang and X.Y. Luo, High temperature oxidation behaviour of AlCuTiFeNiCr high-entropy alloy, Adv. Mater. Res., 652–654(2013), p. 1115.
|
[50] |
X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132(2012), No. 2–3, p. 233.
|
[51] |
S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, art. No. 103505. doi: 10.1063/1.3587228
|